L(s) = 1 | + (0.130 + 0.991i)2-s + (−0.965 + 0.258i)4-s + (−0.382 − 0.923i)8-s + (−0.793 − 0.391i)11-s + (0.866 − 0.5i)16-s + (0.991 − 0.130i)17-s + (0.198 − 0.478i)19-s + (0.284 − 0.837i)22-s + (0.793 + 0.608i)25-s + (0.608 + 0.793i)32-s + (0.258 + 0.965i)34-s + (0.5 + 0.133i)38-s + (1.34 + 1.18i)41-s + (1.20 − 1.57i)43-s + (0.867 + 0.172i)44-s + ⋯ |
L(s) = 1 | + (0.130 + 0.991i)2-s + (−0.965 + 0.258i)4-s + (−0.382 − 0.923i)8-s + (−0.793 − 0.391i)11-s + (0.866 − 0.5i)16-s + (0.991 − 0.130i)17-s + (0.198 − 0.478i)19-s + (0.284 − 0.837i)22-s + (0.793 + 0.608i)25-s + (0.608 + 0.793i)32-s + (0.258 + 0.965i)34-s + (0.5 + 0.133i)38-s + (1.34 + 1.18i)41-s + (1.20 − 1.57i)43-s + (0.867 + 0.172i)44-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3672 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.442 - 0.896i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3672 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.442 - 0.896i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.189337612\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.189337612\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.130 - 0.991i)T \) |
| 3 | \( 1 \) |
| 17 | \( 1 + (-0.991 + 0.130i)T \) |
good | 5 | \( 1 + (-0.793 - 0.608i)T^{2} \) |
| 7 | \( 1 + (0.793 - 0.608i)T^{2} \) |
| 11 | \( 1 + (0.793 + 0.391i)T + (0.608 + 0.793i)T^{2} \) |
| 13 | \( 1 + (0.866 - 0.5i)T^{2} \) |
| 19 | \( 1 + (-0.198 + 0.478i)T + (-0.707 - 0.707i)T^{2} \) |
| 23 | \( 1 + (-0.991 + 0.130i)T^{2} \) |
| 29 | \( 1 + (0.130 - 0.991i)T^{2} \) |
| 31 | \( 1 + (0.608 - 0.793i)T^{2} \) |
| 37 | \( 1 + (-0.382 - 0.923i)T^{2} \) |
| 41 | \( 1 + (-1.34 - 1.18i)T + (0.130 + 0.991i)T^{2} \) |
| 43 | \( 1 + (-1.20 + 1.57i)T + (-0.258 - 0.965i)T^{2} \) |
| 47 | \( 1 + (0.866 + 0.5i)T^{2} \) |
| 53 | \( 1 + (-0.707 - 0.707i)T^{2} \) |
| 59 | \( 1 + (-1.57 - 0.207i)T + (0.965 + 0.258i)T^{2} \) |
| 61 | \( 1 + (-0.793 + 0.608i)T^{2} \) |
| 67 | \( 1 + (-0.226 - 0.130i)T + (0.5 + 0.866i)T^{2} \) |
| 71 | \( 1 + (0.382 + 0.923i)T^{2} \) |
| 73 | \( 1 + (0.128 - 0.0255i)T + (0.923 - 0.382i)T^{2} \) |
| 79 | \( 1 + (0.608 + 0.793i)T^{2} \) |
| 83 | \( 1 + (0.758 - 0.0999i)T + (0.965 - 0.258i)T^{2} \) |
| 89 | \( 1 + (-1.30 + 1.30i)T - iT^{2} \) |
| 97 | \( 1 + (0.483 - 0.423i)T + (0.130 - 0.991i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.735602376497353752432047634003, −7.902996425253391132736978343014, −7.44833607268876568747106099555, −6.66863273195653770636487491703, −5.75698097466258495772563117917, −5.29312039470910839178192007073, −4.46220922282686568081872458721, −3.48671708079967047303230375116, −2.67859600297468537768071128948, −0.924926275774336726131122430564,
0.972495576702502472421378714593, 2.17718508539955666237986407245, 2.95175205262374725163672918075, 3.83893456196690157343878800395, 4.67453697321803867297753387816, 5.41883335062205380584295862313, 6.09735769949246585387314703912, 7.28824427361583428148603535237, 8.002151873319001580139563644038, 8.632135466966061222975246797321