L(s) = 1 | + (0.5 − 0.866i)2-s + (−0.686 + 0.396i)3-s + (−0.499 − 0.866i)4-s + (0.686 + 2.12i)5-s + 0.792i·6-s + (3 − 1.73i)7-s − 0.999·8-s + (−1.18 + 2.05i)9-s + (2.18 + 0.469i)10-s + (0.686 + 0.396i)12-s + (2.68 + 4.65i)13-s − 3.46i·14-s + (−1.31 − 1.18i)15-s + (−0.5 + 0.866i)16-s + (2.18 − 3.78i)17-s + (1.18 + 2.05i)18-s + ⋯ |
L(s) = 1 | + (0.353 − 0.612i)2-s + (−0.396 + 0.228i)3-s + (−0.249 − 0.433i)4-s + (0.306 + 0.951i)5-s + 0.323i·6-s + (1.13 − 0.654i)7-s − 0.353·8-s + (−0.395 + 0.684i)9-s + (0.691 + 0.148i)10-s + (0.198 + 0.114i)12-s + (0.745 + 1.29i)13-s − 0.925i·14-s + (−0.339 − 0.306i)15-s + (−0.125 + 0.216i)16-s + (0.530 − 0.918i)17-s + (0.279 + 0.484i)18-s + ⋯ |
Λ(s)=(=(370s/2ΓC(s)L(s)(0.997+0.0645i)Λ(2−s)
Λ(s)=(=(370s/2ΓC(s+1/2)L(s)(0.997+0.0645i)Λ(1−s)
Degree: |
2 |
Conductor: |
370
= 2⋅5⋅37
|
Sign: |
0.997+0.0645i
|
Analytic conductor: |
2.95446 |
Root analytic conductor: |
1.71885 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ370(249,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 370, ( :1/2), 0.997+0.0645i)
|
Particular Values
L(1) |
≈ |
1.60445−0.0518526i |
L(21) |
≈ |
1.60445−0.0518526i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.5+0.866i)T |
| 5 | 1+(−0.686−2.12i)T |
| 37 | 1+(0.5−6.06i)T |
good | 3 | 1+(0.686−0.396i)T+(1.5−2.59i)T2 |
| 7 | 1+(−3+1.73i)T+(3.5−6.06i)T2 |
| 11 | 1+11T2 |
| 13 | 1+(−2.68−4.65i)T+(−6.5+11.2i)T2 |
| 17 | 1+(−2.18+3.78i)T+(−8.5−14.7i)T2 |
| 19 | 1+(9.5−16.4i)T2 |
| 23 | 1−8.74T+23T2 |
| 29 | 1+4.40iT−29T2 |
| 31 | 1−1.08iT−31T2 |
| 41 | 1+(2.87+4.97i)T+(−20.5+35.5i)T2 |
| 43 | 1+8.11T+43T2 |
| 47 | 1+1.58iT−47T2 |
| 53 | 1+(3.68+2.12i)T+(26.5+45.8i)T2 |
| 59 | 1+(4.62+2.67i)T+(29.5+51.0i)T2 |
| 61 | 1+(6.55−3.78i)T+(30.5−52.8i)T2 |
| 67 | 1+(10.1−5.84i)T+(33.5−58.0i)T2 |
| 71 | 1+(−4.37−7.57i)T+(−35.5+61.4i)T2 |
| 73 | 1+6.92iT−73T2 |
| 79 | 1+(−10.1+5.84i)T+(39.5−68.4i)T2 |
| 83 | 1+(−0.255−0.147i)T+(41.5+71.8i)T2 |
| 89 | 1+(11.1+6.45i)T+(44.5+77.0i)T2 |
| 97 | 1+5.11T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.31994623580952240518743566041, −10.78041420874929812429039042613, −9.921966588180522620019051828597, −8.748600368663142231991025125243, −7.51460607607085403308578618025, −6.53419079352469640806647787369, −5.26834928535282737808378623846, −4.46485725654270067965964940139, −3.08205489312316413880615313022, −1.66561955281867821016586887475,
1.27443413037725629816542276522, 3.33365569672539308744100477056, 4.92366319039026485112379086987, 5.50737918603935609413401946910, 6.32191831215331909486158835900, 7.79290517627784754484632195737, 8.532374968966764102008181554437, 9.174752830196553745472844247649, 10.68870680257684654269153945978, 11.57756602438763639377211797366