L(s) = 1 | − i·2-s − i·3-s − 4-s − 6-s + 0.511i·7-s + i·8-s − 9-s + 3.29·11-s + i·12-s − 2.65i·13-s + 0.511·14-s + 16-s + 5.57i·17-s + i·18-s − 0.374·19-s + ⋯ |
L(s) = 1 | − 0.707i·2-s − 0.577i·3-s − 0.5·4-s − 0.408·6-s + 0.193i·7-s + 0.353i·8-s − 0.333·9-s + 0.993·11-s + 0.288i·12-s − 0.736i·13-s + 0.136·14-s + 0.250·16-s + 1.35i·17-s + 0.235i·18-s − 0.0858·19-s + ⋯ |
Λ(s)=(=(3750s/2ΓC(s)L(s)iΛ(2−s)
Λ(s)=(=(3750s/2ΓC(s+1/2)L(s)iΛ(1−s)
Degree: |
2 |
Conductor: |
3750
= 2⋅3⋅54
|
Sign: |
i
|
Analytic conductor: |
29.9439 |
Root analytic conductor: |
5.47210 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3750(1249,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3750, ( :1/2), i)
|
Particular Values
L(1) |
≈ |
1.820905417 |
L(21) |
≈ |
1.820905417 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+iT |
| 3 | 1+iT |
| 5 | 1 |
good | 7 | 1−0.511iT−7T2 |
| 11 | 1−3.29T+11T2 |
| 13 | 1+2.65iT−13T2 |
| 17 | 1−5.57iT−17T2 |
| 19 | 1+0.374T+19T2 |
| 23 | 1+5.75iT−23T2 |
| 29 | 1−3.89T+29T2 |
| 31 | 1+1.80T+31T2 |
| 37 | 1−10.3iT−37T2 |
| 41 | 1−2.33T+41T2 |
| 43 | 1−5.87iT−43T2 |
| 47 | 1+8.19iT−47T2 |
| 53 | 1+0.518iT−53T2 |
| 59 | 1−7.62T+59T2 |
| 61 | 1−2.90T+61T2 |
| 67 | 1+1.78iT−67T2 |
| 71 | 1−7.27T+71T2 |
| 73 | 1−1.40iT−73T2 |
| 79 | 1−12.1T+79T2 |
| 83 | 1+3.09iT−83T2 |
| 89 | 1+3.42T+89T2 |
| 97 | 1+15.1iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.495379901431532327457101873182, −7.78925011155464039722389356238, −6.67276554530642036611577521353, −6.23186368191093430159511716465, −5.29288665391279195384666230669, −4.34835077029204489018799552978, −3.55157965890240636772148327746, −2.64335299876415013157161082421, −1.70821901860594511549881580449, −0.75415737860635199613155401933,
0.870689289864353836958925763904, 2.30881180570724784172698498669, 3.58655444174073437338873957647, 4.12086573791115325664611324950, 4.99074108151958188207324755906, 5.66975451478769541528546961470, 6.56212099825053014595671521474, 7.17958029264428344252552077613, 7.82752292415562850082480615547, 8.996133401146336027493674689728