Properties

Label 2-3750-5.4-c1-0-47
Degree $2$
Conductor $3750$
Sign $i$
Analytic cond. $29.9439$
Root an. cond. $5.47210$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  i·2-s i·3-s − 4-s − 6-s + 0.511i·7-s + i·8-s − 9-s + 3.29·11-s + i·12-s − 2.65i·13-s + 0.511·14-s + 16-s + 5.57i·17-s + i·18-s − 0.374·19-s + ⋯
L(s)  = 1  − 0.707i·2-s − 0.577i·3-s − 0.5·4-s − 0.408·6-s + 0.193i·7-s + 0.353i·8-s − 0.333·9-s + 0.993·11-s + 0.288i·12-s − 0.736i·13-s + 0.136·14-s + 0.250·16-s + 1.35i·17-s + 0.235i·18-s − 0.0858·19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3750 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & i\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3750 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & i\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3750\)    =    \(2 \cdot 3 \cdot 5^{4}\)
Sign: $i$
Analytic conductor: \(29.9439\)
Root analytic conductor: \(5.47210\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{3750} (1249, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 3750,\ (\ :1/2),\ i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.820905417\)
\(L(\frac12)\) \(\approx\) \(1.820905417\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + iT \)
3 \( 1 + iT \)
5 \( 1 \)
good7 \( 1 - 0.511iT - 7T^{2} \)
11 \( 1 - 3.29T + 11T^{2} \)
13 \( 1 + 2.65iT - 13T^{2} \)
17 \( 1 - 5.57iT - 17T^{2} \)
19 \( 1 + 0.374T + 19T^{2} \)
23 \( 1 + 5.75iT - 23T^{2} \)
29 \( 1 - 3.89T + 29T^{2} \)
31 \( 1 + 1.80T + 31T^{2} \)
37 \( 1 - 10.3iT - 37T^{2} \)
41 \( 1 - 2.33T + 41T^{2} \)
43 \( 1 - 5.87iT - 43T^{2} \)
47 \( 1 + 8.19iT - 47T^{2} \)
53 \( 1 + 0.518iT - 53T^{2} \)
59 \( 1 - 7.62T + 59T^{2} \)
61 \( 1 - 2.90T + 61T^{2} \)
67 \( 1 + 1.78iT - 67T^{2} \)
71 \( 1 - 7.27T + 71T^{2} \)
73 \( 1 - 1.40iT - 73T^{2} \)
79 \( 1 - 12.1T + 79T^{2} \)
83 \( 1 + 3.09iT - 83T^{2} \)
89 \( 1 + 3.42T + 89T^{2} \)
97 \( 1 + 15.1iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.495379901431532327457101873182, −7.78925011155464039722389356238, −6.67276554530642036611577521353, −6.23186368191093430159511716465, −5.29288665391279195384666230669, −4.34835077029204489018799552978, −3.55157965890240636772148327746, −2.64335299876415013157161082421, −1.70821901860594511549881580449, −0.75415737860635199613155401933, 0.870689289864353836958925763904, 2.30881180570724784172698498669, 3.58655444174073437338873957647, 4.12086573791115325664611324950, 4.99074108151958188207324755906, 5.66975451478769541528546961470, 6.56212099825053014595671521474, 7.17958029264428344252552077613, 7.82752292415562850082480615547, 8.996133401146336027493674689728

Graph of the $Z$-function along the critical line