L(s) = 1 | + (0.766 + 0.642i)2-s + (1.76 − 0.642i)3-s + (0.173 + 0.984i)4-s + (1.76 + 0.642i)6-s + (−0.500 + 0.866i)8-s + (1.93 − 1.62i)9-s + (−0.766 + 1.32i)11-s + (0.939 + 1.62i)12-s + (−0.939 + 0.342i)16-s + (−0.766 − 0.642i)17-s + 2.53·18-s + (0.766 − 0.642i)19-s + (−1.43 + 0.524i)22-s + (−0.326 + 1.85i)24-s + (1.43 − 2.49i)27-s + ⋯ |
L(s) = 1 | + (0.766 + 0.642i)2-s + (1.76 − 0.642i)3-s + (0.173 + 0.984i)4-s + (1.76 + 0.642i)6-s + (−0.500 + 0.866i)8-s + (1.93 − 1.62i)9-s + (−0.766 + 1.32i)11-s + (0.939 + 1.62i)12-s + (−0.939 + 0.342i)16-s + (−0.766 − 0.642i)17-s + 2.53·18-s + (0.766 − 0.642i)19-s + (−1.43 + 0.524i)22-s + (−0.326 + 1.85i)24-s + (1.43 − 2.49i)27-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.756 - 0.654i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.756 - 0.654i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(3.444898518\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.444898518\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.766 - 0.642i)T \) |
| 5 | \( 1 \) |
| 19 | \( 1 + (-0.766 + 0.642i)T \) |
good | 3 | \( 1 + (-1.76 + 0.642i)T + (0.766 - 0.642i)T^{2} \) |
| 7 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 11 | \( 1 + (0.766 - 1.32i)T + (-0.5 - 0.866i)T^{2} \) |
| 13 | \( 1 + (-0.766 - 0.642i)T^{2} \) |
| 17 | \( 1 + (0.766 + 0.642i)T + (0.173 + 0.984i)T^{2} \) |
| 23 | \( 1 + (0.939 - 0.342i)T^{2} \) |
| 29 | \( 1 + (-0.173 + 0.984i)T^{2} \) |
| 31 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 37 | \( 1 - T^{2} \) |
| 41 | \( 1 + (-1.76 + 0.642i)T + (0.766 - 0.642i)T^{2} \) |
| 43 | \( 1 + (0.173 - 0.984i)T + (-0.939 - 0.342i)T^{2} \) |
| 47 | \( 1 + (-0.173 + 0.984i)T^{2} \) |
| 53 | \( 1 + (0.939 - 0.342i)T^{2} \) |
| 59 | \( 1 + (1.43 + 1.20i)T + (0.173 + 0.984i)T^{2} \) |
| 61 | \( 1 + (0.939 - 0.342i)T^{2} \) |
| 67 | \( 1 + (1.43 - 1.20i)T + (0.173 - 0.984i)T^{2} \) |
| 71 | \( 1 + (0.939 + 0.342i)T^{2} \) |
| 73 | \( 1 + (0.326 - 0.118i)T + (0.766 - 0.642i)T^{2} \) |
| 79 | \( 1 + (-0.766 + 0.642i)T^{2} \) |
| 83 | \( 1 + (0.766 + 1.32i)T + (-0.5 + 0.866i)T^{2} \) |
| 89 | \( 1 + (1.87 + 0.684i)T + (0.766 + 0.642i)T^{2} \) |
| 97 | \( 1 + (-0.266 - 0.223i)T + (0.173 + 0.984i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.536335493528448860733247459210, −7.79994507604771304407138163382, −7.29782506637038413920829691573, −6.95176513340206908944139673891, −5.90352935693784931784445286000, −4.67145421097925607364092112379, −4.30842202658855752992176899649, −3.05293389421121208712818099326, −2.68580524566222964331829090725, −1.77345951636550670047352189157,
1.50786051014669123445812855798, 2.54126919979046509345881878895, 3.09218346791879366697914252569, 3.79334936878745012956437526042, 4.45093724303031218212184007107, 5.37520621460599890396709574141, 6.16459398717167379971306559774, 7.31857728208881232088348872629, 8.058930693361989386536622887179, 8.700061087682479727104865563801