L(s) = 1 | + (0.766 + 0.642i)2-s + (1.76 − 0.642i)3-s + (0.173 + 0.984i)4-s + (1.76 + 0.642i)6-s + (−0.500 + 0.866i)8-s + (1.93 − 1.62i)9-s + (−0.766 + 1.32i)11-s + (0.939 + 1.62i)12-s + (−0.939 + 0.342i)16-s + (−0.766 − 0.642i)17-s + 2.53·18-s + (0.766 − 0.642i)19-s + (−1.43 + 0.524i)22-s + (−0.326 + 1.85i)24-s + (1.43 − 2.49i)27-s + ⋯ |
L(s) = 1 | + (0.766 + 0.642i)2-s + (1.76 − 0.642i)3-s + (0.173 + 0.984i)4-s + (1.76 + 0.642i)6-s + (−0.500 + 0.866i)8-s + (1.93 − 1.62i)9-s + (−0.766 + 1.32i)11-s + (0.939 + 1.62i)12-s + (−0.939 + 0.342i)16-s + (−0.766 − 0.642i)17-s + 2.53·18-s + (0.766 − 0.642i)19-s + (−1.43 + 0.524i)22-s + (−0.326 + 1.85i)24-s + (1.43 − 2.49i)27-s + ⋯ |
Λ(s)=(=(3800s/2ΓC(s)L(s)(0.756−0.654i)Λ(1−s)
Λ(s)=(=(3800s/2ΓC(s)L(s)(0.756−0.654i)Λ(1−s)
Degree: |
2 |
Conductor: |
3800
= 23⋅52⋅19
|
Sign: |
0.756−0.654i
|
Analytic conductor: |
1.89644 |
Root analytic conductor: |
1.37711 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3800(1251,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3800, ( :0), 0.756−0.654i)
|
Particular Values
L(21) |
≈ |
3.444898518 |
L(21) |
≈ |
3.444898518 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.766−0.642i)T |
| 5 | 1 |
| 19 | 1+(−0.766+0.642i)T |
good | 3 | 1+(−1.76+0.642i)T+(0.766−0.642i)T2 |
| 7 | 1+(0.5−0.866i)T2 |
| 11 | 1+(0.766−1.32i)T+(−0.5−0.866i)T2 |
| 13 | 1+(−0.766−0.642i)T2 |
| 17 | 1+(0.766+0.642i)T+(0.173+0.984i)T2 |
| 23 | 1+(0.939−0.342i)T2 |
| 29 | 1+(−0.173+0.984i)T2 |
| 31 | 1+(0.5−0.866i)T2 |
| 37 | 1−T2 |
| 41 | 1+(−1.76+0.642i)T+(0.766−0.642i)T2 |
| 43 | 1+(0.173−0.984i)T+(−0.939−0.342i)T2 |
| 47 | 1+(−0.173+0.984i)T2 |
| 53 | 1+(0.939−0.342i)T2 |
| 59 | 1+(1.43+1.20i)T+(0.173+0.984i)T2 |
| 61 | 1+(0.939−0.342i)T2 |
| 67 | 1+(1.43−1.20i)T+(0.173−0.984i)T2 |
| 71 | 1+(0.939+0.342i)T2 |
| 73 | 1+(0.326−0.118i)T+(0.766−0.642i)T2 |
| 79 | 1+(−0.766+0.642i)T2 |
| 83 | 1+(0.766+1.32i)T+(−0.5+0.866i)T2 |
| 89 | 1+(1.87+0.684i)T+(0.766+0.642i)T2 |
| 97 | 1+(−0.266−0.223i)T+(0.173+0.984i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.536335493528448860733247459210, −7.79994507604771304407138163382, −7.29782506637038413920829691573, −6.95176513340206908944139673891, −5.90352935693784931784445286000, −4.67145421097925607364092112379, −4.30842202658855752992176899649, −3.05293389421121208712818099326, −2.68580524566222964331829090725, −1.77345951636550670047352189157,
1.50786051014669123445812855798, 2.54126919979046509345881878895, 3.09218346791879366697914252569, 3.79334936878745012956437526042, 4.45093724303031218212184007107, 5.37520621460599890396709574141, 6.16459398717167379971306559774, 7.31857728208881232088348872629, 8.058930693361989386536622887179, 8.700061087682479727104865563801