L(s) = 1 | + (−1.61 − 0.618i)3-s + 1.23i·5-s − 3.23i·7-s + (2.23 + 2.00i)9-s + 0.763·11-s − 4.47·13-s + (0.763 − 2.00i)15-s − 6.47i·17-s − 5.23i·19-s + (−2.00 + 5.23i)21-s − 6.47·23-s + 3.47·25-s + (−2.38 − 4.61i)27-s − 9.23i·29-s + 0.763i·31-s + ⋯ |
L(s) = 1 | + (−0.934 − 0.356i)3-s + 0.552i·5-s − 1.22i·7-s + (0.745 + 0.666i)9-s + 0.230·11-s − 1.24·13-s + (0.197 − 0.516i)15-s − 1.56i·17-s − 1.20i·19-s + (−0.436 + 1.14i)21-s − 1.34·23-s + 0.694·25-s + (−0.458 − 0.888i)27-s − 1.71i·29-s + 0.137i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 384 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.356 + 0.934i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 384 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.356 + 0.934i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.405237 - 0.588580i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.405237 - 0.588580i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (1.61 + 0.618i)T \) |
good | 5 | \( 1 - 1.23iT - 5T^{2} \) |
| 7 | \( 1 + 3.23iT - 7T^{2} \) |
| 11 | \( 1 - 0.763T + 11T^{2} \) |
| 13 | \( 1 + 4.47T + 13T^{2} \) |
| 17 | \( 1 + 6.47iT - 17T^{2} \) |
| 19 | \( 1 + 5.23iT - 19T^{2} \) |
| 23 | \( 1 + 6.47T + 23T^{2} \) |
| 29 | \( 1 + 9.23iT - 29T^{2} \) |
| 31 | \( 1 - 0.763iT - 31T^{2} \) |
| 37 | \( 1 - 0.472T + 37T^{2} \) |
| 41 | \( 1 - 2.47iT - 41T^{2} \) |
| 43 | \( 1 - 2.76iT - 43T^{2} \) |
| 47 | \( 1 + 8T + 47T^{2} \) |
| 53 | \( 1 - 1.23iT - 53T^{2} \) |
| 59 | \( 1 - 3.23T + 59T^{2} \) |
| 61 | \( 1 - 8.47T + 61T^{2} \) |
| 67 | \( 1 - 3.70iT - 67T^{2} \) |
| 71 | \( 1 - 11.4T + 71T^{2} \) |
| 73 | \( 1 + 2T + 73T^{2} \) |
| 79 | \( 1 - 13.7iT - 79T^{2} \) |
| 83 | \( 1 - 7.23T + 83T^{2} \) |
| 89 | \( 1 + 4iT - 89T^{2} \) |
| 97 | \( 1 + 8.47T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.26211072306156908490365794355, −10.14678199095696782443783019204, −9.660873371651913088279251927592, −7.85984494523370398543395636615, −7.11598315438957270778129682342, −6.55095056031657267483702077158, −5.11666821562140884642663997519, −4.26104731231808745258099638198, −2.52866925710650984195584796654, −0.52833814300405234554427011740,
1.83548621488853150549222289154, 3.74678272242361289903181249756, 4.98790155860994296026882195668, 5.70087326337340059556178010635, 6.61433965144405487198754339378, 8.036084077565844897833599344961, 8.959217521451150062476339426517, 9.896793546833873198011606457929, 10.64238712966067082987870867527, 11.87980248910160989462261459127