Properties

Label 2-3872-1.1-c1-0-25
Degree $2$
Conductor $3872$
Sign $1$
Analytic cond. $30.9180$
Root an. cond. $5.56040$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.52·3-s − 2.85·5-s − 2.52·7-s + 3.38·9-s − 4.85·13-s − 7.21·15-s + 5.61·17-s − 2.52·19-s − 6.38·21-s + 8.17·23-s + 3.14·25-s + 0.964·27-s + 1.38·29-s + 6.61·31-s + 7.21·35-s − 0.618·37-s − 12.2·39-s + 8.61·41-s − 3.12·43-s − 9.65·45-s + 0.596·47-s − 0.618·49-s + 14.1·51-s + 0.381·53-s − 6.38·57-s + 10.7·59-s − 3.61·61-s + ⋯
L(s)  = 1  + 1.45·3-s − 1.27·5-s − 0.954·7-s + 1.12·9-s − 1.34·13-s − 1.86·15-s + 1.36·17-s − 0.579·19-s − 1.39·21-s + 1.70·23-s + 0.629·25-s + 0.185·27-s + 0.256·29-s + 1.18·31-s + 1.21·35-s − 0.101·37-s − 1.96·39-s + 1.34·41-s − 0.476·43-s − 1.43·45-s + 0.0869·47-s − 0.0882·49-s + 1.98·51-s + 0.0524·53-s − 0.845·57-s + 1.39·59-s − 0.463·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3872 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3872 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3872\)    =    \(2^{5} \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(30.9180\)
Root analytic conductor: \(5.56040\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 3872,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.026576368\)
\(L(\frac12)\) \(\approx\) \(2.026576368\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
11 \( 1 \)
good3 \( 1 - 2.52T + 3T^{2} \)
5 \( 1 + 2.85T + 5T^{2} \)
7 \( 1 + 2.52T + 7T^{2} \)
13 \( 1 + 4.85T + 13T^{2} \)
17 \( 1 - 5.61T + 17T^{2} \)
19 \( 1 + 2.52T + 19T^{2} \)
23 \( 1 - 8.17T + 23T^{2} \)
29 \( 1 - 1.38T + 29T^{2} \)
31 \( 1 - 6.61T + 31T^{2} \)
37 \( 1 + 0.618T + 37T^{2} \)
41 \( 1 - 8.61T + 41T^{2} \)
43 \( 1 + 3.12T + 43T^{2} \)
47 \( 1 - 0.596T + 47T^{2} \)
53 \( 1 - 0.381T + 53T^{2} \)
59 \( 1 - 10.7T + 59T^{2} \)
61 \( 1 + 3.61T + 61T^{2} \)
67 \( 1 - 13.2T + 67T^{2} \)
71 \( 1 - 11.6T + 71T^{2} \)
73 \( 1 - 4.32T + 73T^{2} \)
79 \( 1 + 3.49T + 79T^{2} \)
83 \( 1 - 11.6T + 83T^{2} \)
89 \( 1 + 7.23T + 89T^{2} \)
97 \( 1 - 17.7T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.266638090757611544264097677408, −7.927811419621175760566098642460, −7.19866048750955047460657613992, −6.64877364678009841260605754679, −5.32148836969078206203003596151, −4.42494391605597027303607815314, −3.60837390740767859488372968244, −3.05724893123994836814406321052, −2.40332892910761382656649987044, −0.74568143478315124783066145503, 0.74568143478315124783066145503, 2.40332892910761382656649987044, 3.05724893123994836814406321052, 3.60837390740767859488372968244, 4.42494391605597027303607815314, 5.32148836969078206203003596151, 6.64877364678009841260605754679, 7.19866048750955047460657613992, 7.927811419621175760566098642460, 8.266638090757611544264097677408

Graph of the $Z$-function along the critical line