L(s) = 1 | + 1.73i·7-s + 13-s + 1.73i·19-s − 25-s − 1.73i·31-s − 37-s + 1.73i·43-s − 1.99·49-s + 2·61-s − 2·73-s + 1.73i·79-s + 1.73i·91-s + 97-s + 109-s + ⋯ |
L(s) = 1 | + 1.73i·7-s + 13-s + 1.73i·19-s − 25-s − 1.73i·31-s − 37-s + 1.73i·43-s − 1.99·49-s + 2·61-s − 2·73-s + 1.73i·79-s + 1.73i·91-s + 97-s + 109-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3888 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -i\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3888 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -i\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.198101897\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.198101897\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
good | 5 | \( 1 + T^{2} \) |
| 7 | \( 1 - 1.73iT - T^{2} \) |
| 11 | \( 1 - T^{2} \) |
| 13 | \( 1 - T + T^{2} \) |
| 17 | \( 1 + T^{2} \) |
| 19 | \( 1 - 1.73iT - T^{2} \) |
| 23 | \( 1 - T^{2} \) |
| 29 | \( 1 + T^{2} \) |
| 31 | \( 1 + 1.73iT - T^{2} \) |
| 37 | \( 1 + T + T^{2} \) |
| 41 | \( 1 + T^{2} \) |
| 43 | \( 1 - 1.73iT - T^{2} \) |
| 47 | \( 1 - T^{2} \) |
| 53 | \( 1 + T^{2} \) |
| 59 | \( 1 - T^{2} \) |
| 61 | \( 1 - 2T + T^{2} \) |
| 67 | \( 1 - T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 + 2T + T^{2} \) |
| 79 | \( 1 - 1.73iT - T^{2} \) |
| 83 | \( 1 - T^{2} \) |
| 89 | \( 1 + T^{2} \) |
| 97 | \( 1 - T + T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.636517345976155207467158642626, −8.304926904238248060367005804152, −7.54499874478131518908465520673, −6.29498026651160392686968601612, −5.91359528529729946373567525132, −5.36022280479461199755930395602, −4.18258059645334671716392452603, −3.40991304823595883101538525522, −2.38567725719458076953098623207, −1.59077800161339049598734438441,
0.69193233292483628424733545529, 1.79174088305807094519796510177, 3.18994212721028625485395441682, 3.83057584770096436586811897867, 4.59501332111968682976600513949, 5.40299752129183607168537666346, 6.49405015674366153155338055015, 7.04316006665404028967607017978, 7.54849808375161551318656304955, 8.591184011852339645215313924463