L(s) = 1 | + (−0.974 + 1.22i)3-s + (−0.623 + 0.781i)5-s + (0.433 − 0.900i)7-s + (−0.321 − 1.40i)9-s + (−0.347 − 1.52i)15-s + (0.678 + 1.40i)21-s + (−1.40 − 0.678i)23-s + (−0.222 − 0.974i)25-s + (0.626 + 0.301i)27-s + (1.62 − 0.781i)29-s + (0.433 + 0.900i)35-s + (0.277 − 0.347i)41-s + (−1.21 − 1.52i)43-s + (1.30 + 0.626i)45-s + (0.347 − 1.52i)47-s + ⋯ |
L(s) = 1 | + (−0.974 + 1.22i)3-s + (−0.623 + 0.781i)5-s + (0.433 − 0.900i)7-s + (−0.321 − 1.40i)9-s + (−0.347 − 1.52i)15-s + (0.678 + 1.40i)21-s + (−1.40 − 0.678i)23-s + (−0.222 − 0.974i)25-s + (0.626 + 0.301i)27-s + (1.62 − 0.781i)29-s + (0.433 + 0.900i)35-s + (0.277 − 0.347i)41-s + (−1.21 − 1.52i)43-s + (1.30 + 0.626i)45-s + (0.347 − 1.52i)47-s + ⋯ |
Λ(s)=(=(3920s/2ΓC(s)L(s)(0.981+0.191i)Λ(1−s)
Λ(s)=(=(3920s/2ΓC(s)L(s)(0.981+0.191i)Λ(1−s)
Degree: |
2 |
Conductor: |
3920
= 24⋅5⋅72
|
Sign: |
0.981+0.191i
|
Analytic conductor: |
1.95633 |
Root analytic conductor: |
1.39869 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3920(799,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3920, ( :0), 0.981+0.191i)
|
Particular Values
L(21) |
≈ |
0.6237609937 |
L(21) |
≈ |
0.6237609937 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1+(0.623−0.781i)T |
| 7 | 1+(−0.433+0.900i)T |
good | 3 | 1+(0.974−1.22i)T+(−0.222−0.974i)T2 |
| 11 | 1+(0.900+0.433i)T2 |
| 13 | 1+(0.900+0.433i)T2 |
| 17 | 1+(−0.623+0.781i)T2 |
| 19 | 1−T2 |
| 23 | 1+(1.40+0.678i)T+(0.623+0.781i)T2 |
| 29 | 1+(−1.62+0.781i)T+(0.623−0.781i)T2 |
| 31 | 1−T2 |
| 37 | 1+(−0.623+0.781i)T2 |
| 41 | 1+(−0.277+0.347i)T+(−0.222−0.974i)T2 |
| 43 | 1+(1.21+1.52i)T+(−0.222+0.974i)T2 |
| 47 | 1+(−0.347+1.52i)T+(−0.900−0.433i)T2 |
| 53 | 1+(−0.623−0.781i)T2 |
| 59 | 1+(0.222−0.974i)T2 |
| 61 | 1+(−1.12+0.541i)T+(0.623−0.781i)T2 |
| 67 | 1+T2 |
| 71 | 1+(−0.623−0.781i)T2 |
| 73 | 1+(0.900−0.433i)T2 |
| 79 | 1−T2 |
| 83 | 1+(−0.193−0.846i)T+(−0.900+0.433i)T2 |
| 89 | 1+(−0.400−1.75i)T+(−0.900+0.433i)T2 |
| 97 | 1−T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.477169841537834399042195444902, −7.988419467422051236790682121149, −6.94040745041350949054795038920, −6.47699648102777439067894284836, −5.52025202040431117190535326329, −4.73542750242663310351275015107, −4.02872254450270482330203266653, −3.63588560807637010403818997973, −2.30300176695711612860100726426, −0.46711404657144153919783925067,
1.10618767698904458490661547983, 1.86851935791526856574090796957, 3.06476326096413830901028466821, 4.40113764083080741905629171400, 5.04221771838932022024704308408, 5.81903374297771173928634429675, 6.33005867373873858394755790568, 7.24904326011572256949487591963, 7.970628030916402508102586313574, 8.358785415650033458831048133640