L(s) = 1 | + (−0.809 − 0.587i)2-s + (0.309 + 0.951i)4-s + (−0.587 − 0.809i)5-s + (−0.863 + 0.280i)7-s + (0.309 − 0.951i)8-s + i·10-s + (0.891 + 0.453i)11-s + (−0.183 + 0.253i)13-s + (0.863 + 0.280i)14-s + (−0.809 + 0.587i)16-s + (−1.53 − 0.5i)19-s + (0.587 − 0.809i)20-s + (−0.453 − 0.891i)22-s − 0.618i·23-s + (−0.309 + 0.951i)25-s + (0.297 − 0.0966i)26-s + ⋯ |
L(s) = 1 | + (−0.809 − 0.587i)2-s + (0.309 + 0.951i)4-s + (−0.587 − 0.809i)5-s + (−0.863 + 0.280i)7-s + (0.309 − 0.951i)8-s + i·10-s + (0.891 + 0.453i)11-s + (−0.183 + 0.253i)13-s + (0.863 + 0.280i)14-s + (−0.809 + 0.587i)16-s + (−1.53 − 0.5i)19-s + (0.587 − 0.809i)20-s + (−0.453 − 0.891i)22-s − 0.618i·23-s + (−0.309 + 0.951i)25-s + (0.297 − 0.0966i)26-s + ⋯ |
Λ(s)=(=(3960s/2ΓC(s)L(s)(−0.100−0.994i)Λ(1−s)
Λ(s)=(=(3960s/2ΓC(s)L(s)(−0.100−0.994i)Λ(1−s)
Degree: |
2 |
Conductor: |
3960
= 23⋅32⋅5⋅11
|
Sign: |
−0.100−0.994i
|
Analytic conductor: |
1.97629 |
Root analytic conductor: |
1.40580 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3960(2339,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3960, ( :0), −0.100−0.994i)
|
Particular Values
L(21) |
≈ |
0.2094588315 |
L(21) |
≈ |
0.2094588315 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.809+0.587i)T |
| 3 | 1 |
| 5 | 1+(0.587+0.809i)T |
| 11 | 1+(−0.891−0.453i)T |
good | 7 | 1+(0.863−0.280i)T+(0.809−0.587i)T2 |
| 13 | 1+(0.183−0.253i)T+(−0.309−0.951i)T2 |
| 17 | 1+(−0.309+0.951i)T2 |
| 19 | 1+(1.53+0.5i)T+(0.809+0.587i)T2 |
| 23 | 1+0.618iT−T2 |
| 29 | 1+(0.809−0.587i)T2 |
| 31 | 1+(−0.309−0.951i)T2 |
| 37 | 1+(−0.610−1.87i)T+(−0.809+0.587i)T2 |
| 41 | 1+(−0.550+1.69i)T+(−0.809−0.587i)T2 |
| 43 | 1+T2 |
| 47 | 1+(1.11+0.363i)T+(0.809+0.587i)T2 |
| 53 | 1+(1.11−1.53i)T+(−0.309−0.951i)T2 |
| 59 | 1+(1.87−0.610i)T+(0.809−0.587i)T2 |
| 61 | 1+(0.309−0.951i)T2 |
| 67 | 1−T2 |
| 71 | 1+(0.309−0.951i)T2 |
| 73 | 1+(−0.809+0.587i)T2 |
| 79 | 1+(0.309+0.951i)T2 |
| 83 | 1+(−0.309+0.951i)T2 |
| 89 | 1−1.78iT−T2 |
| 97 | 1+(−0.309−0.951i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.019136799713216576939688180772, −8.310407494116955437052255647923, −7.56307213494594231816729526532, −6.66848538917046507010642536221, −6.23074726420440841056421631294, −4.70860578515882443252111888416, −4.22537758967752172304825644814, −3.32180358494545687399796648446, −2.35127581059643719047896355209, −1.27931390574006041131103342001,
0.16056266344261937044968692791, 1.74067404911642514169791343972, 2.93970090292189434516186250297, 3.76636235021289157501804074846, 4.65659335861973577752992978082, 6.02472726072755092566824496461, 6.30884566524414452862082390681, 6.95945454846143795686522632534, 7.77675458890745773177105785751, 8.261600468495609636786059071521