L(s) = 1 | + (−0.809 − 0.587i)2-s + (0.309 + 0.951i)4-s + (−0.587 − 0.809i)5-s + (−0.863 + 0.280i)7-s + (0.309 − 0.951i)8-s + i·10-s + (0.891 + 0.453i)11-s + (−0.183 + 0.253i)13-s + (0.863 + 0.280i)14-s + (−0.809 + 0.587i)16-s + (−1.53 − 0.5i)19-s + (0.587 − 0.809i)20-s + (−0.453 − 0.891i)22-s − 0.618i·23-s + (−0.309 + 0.951i)25-s + (0.297 − 0.0966i)26-s + ⋯ |
L(s) = 1 | + (−0.809 − 0.587i)2-s + (0.309 + 0.951i)4-s + (−0.587 − 0.809i)5-s + (−0.863 + 0.280i)7-s + (0.309 − 0.951i)8-s + i·10-s + (0.891 + 0.453i)11-s + (−0.183 + 0.253i)13-s + (0.863 + 0.280i)14-s + (−0.809 + 0.587i)16-s + (−1.53 − 0.5i)19-s + (0.587 − 0.809i)20-s + (−0.453 − 0.891i)22-s − 0.618i·23-s + (−0.309 + 0.951i)25-s + (0.297 − 0.0966i)26-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3960 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.100 - 0.994i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3960 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.100 - 0.994i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.2094588315\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.2094588315\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.809 + 0.587i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (0.587 + 0.809i)T \) |
| 11 | \( 1 + (-0.891 - 0.453i)T \) |
good | 7 | \( 1 + (0.863 - 0.280i)T + (0.809 - 0.587i)T^{2} \) |
| 13 | \( 1 + (0.183 - 0.253i)T + (-0.309 - 0.951i)T^{2} \) |
| 17 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 19 | \( 1 + (1.53 + 0.5i)T + (0.809 + 0.587i)T^{2} \) |
| 23 | \( 1 + 0.618iT - T^{2} \) |
| 29 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 31 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 37 | \( 1 + (-0.610 - 1.87i)T + (-0.809 + 0.587i)T^{2} \) |
| 41 | \( 1 + (-0.550 + 1.69i)T + (-0.809 - 0.587i)T^{2} \) |
| 43 | \( 1 + T^{2} \) |
| 47 | \( 1 + (1.11 + 0.363i)T + (0.809 + 0.587i)T^{2} \) |
| 53 | \( 1 + (1.11 - 1.53i)T + (-0.309 - 0.951i)T^{2} \) |
| 59 | \( 1 + (1.87 - 0.610i)T + (0.809 - 0.587i)T^{2} \) |
| 61 | \( 1 + (0.309 - 0.951i)T^{2} \) |
| 67 | \( 1 - T^{2} \) |
| 71 | \( 1 + (0.309 - 0.951i)T^{2} \) |
| 73 | \( 1 + (-0.809 + 0.587i)T^{2} \) |
| 79 | \( 1 + (0.309 + 0.951i)T^{2} \) |
| 83 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 89 | \( 1 - 1.78iT - T^{2} \) |
| 97 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.019136799713216576939688180772, −8.310407494116955437052255647923, −7.56307213494594231816729526532, −6.66848538917046507010642536221, −6.23074726420440841056421631294, −4.70860578515882443252111888416, −4.22537758967752172304825644814, −3.32180358494545687399796648446, −2.35127581059643719047896355209, −1.27931390574006041131103342001,
0.16056266344261937044968692791, 1.74067404911642514169791343972, 2.93970090292189434516186250297, 3.76636235021289157501804074846, 4.65659335861973577752992978082, 6.02472726072755092566824496461, 6.30884566524414452862082390681, 6.95945454846143795686522632534, 7.77675458890745773177105785751, 8.261600468495609636786059071521