L(s) = 1 | + (2.15 − 0.611i)5-s + 4.56i·7-s − 11-s − 7.18i·13-s − 1.73i·17-s − 0.424·19-s − 6.92i·23-s + (4.25 − 2.63i)25-s − 9.38·29-s + 4.56·31-s + (2.79 + 9.81i)35-s − 8.44i·37-s − 7.27·41-s + 4.29i·43-s − 8.86i·47-s + ⋯ |
L(s) = 1 | + (0.961 − 0.273i)5-s + 1.72i·7-s − 0.301·11-s − 1.99i·13-s − 0.421i·17-s − 0.0974·19-s − 1.44i·23-s + (0.850 − 0.526i)25-s − 1.74·29-s + 0.820·31-s + (0.471 + 1.65i)35-s − 1.38i·37-s − 1.13·41-s + 0.655i·43-s − 1.29i·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3960 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.273 + 0.961i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3960 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.273 + 0.961i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.756144395\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.756144395\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (-2.15 + 0.611i)T \) |
| 11 | \( 1 + T \) |
good | 7 | \( 1 - 4.56iT - 7T^{2} \) |
| 13 | \( 1 + 7.18iT - 13T^{2} \) |
| 17 | \( 1 + 1.73iT - 17T^{2} \) |
| 19 | \( 1 + 0.424T + 19T^{2} \) |
| 23 | \( 1 + 6.92iT - 23T^{2} \) |
| 29 | \( 1 + 9.38T + 29T^{2} \) |
| 31 | \( 1 - 4.56T + 31T^{2} \) |
| 37 | \( 1 + 8.44iT - 37T^{2} \) |
| 41 | \( 1 + 7.27T + 41T^{2} \) |
| 43 | \( 1 - 4.29iT - 43T^{2} \) |
| 47 | \( 1 + 8.86iT - 47T^{2} \) |
| 53 | \( 1 + 7.56iT - 53T^{2} \) |
| 59 | \( 1 + 2.11T + 59T^{2} \) |
| 61 | \( 1 - 7.38T + 61T^{2} \) |
| 67 | \( 1 + 1.07iT - 67T^{2} \) |
| 71 | \( 1 - 11.6T + 71T^{2} \) |
| 73 | \( 1 + 4.24iT - 73T^{2} \) |
| 79 | \( 1 + 14.2T + 79T^{2} \) |
| 83 | \( 1 + 3.60iT - 83T^{2} \) |
| 89 | \( 1 - 15.4T + 89T^{2} \) |
| 97 | \( 1 - 13.4iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.458374663147965067981416202385, −7.77732515372615359777656648920, −6.63089065494102546824268110447, −5.89177835779962725559559887439, −5.36834796133340039965295216123, −4.95328495937688008842981909145, −3.42741397535891477668371356930, −2.56055107603029508951596236573, −2.05730913077331378672481677909, −0.48584484589124073123146085357,
1.32265604853454116393569699252, 1.92811011974865817444394655695, 3.26862016175723516968527764355, 4.05409960575948907510767820467, 4.73542904271877410321335954286, 5.72714526580551345664617813383, 6.58478441997211288645007319321, 7.04371859482451394021255654876, 7.67824392567798220354777328782, 8.684673121387081755634019999080