Properties

Label 2-3971-1.1-c1-0-27
Degree $2$
Conductor $3971$
Sign $1$
Analytic cond. $31.7085$
Root an. cond. $5.63103$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.396·2-s − 1.26·3-s − 1.84·4-s + 0.441·5-s + 0.502·6-s − 0.667·7-s + 1.52·8-s − 1.39·9-s − 0.175·10-s − 11-s + 2.33·12-s − 1.60·13-s + 0.264·14-s − 0.560·15-s + 3.08·16-s + 4.05·17-s + 0.551·18-s − 0.814·20-s + 0.846·21-s + 0.396·22-s − 0.374·23-s − 1.93·24-s − 4.80·25-s + 0.636·26-s + 5.56·27-s + 1.23·28-s + 2.56·29-s + ⋯
L(s)  = 1  − 0.280·2-s − 0.732·3-s − 0.921·4-s + 0.197·5-s + 0.205·6-s − 0.252·7-s + 0.538·8-s − 0.464·9-s − 0.0553·10-s − 0.301·11-s + 0.674·12-s − 0.445·13-s + 0.0707·14-s − 0.144·15-s + 0.770·16-s + 0.983·17-s + 0.130·18-s − 0.182·20-s + 0.184·21-s + 0.0845·22-s − 0.0781·23-s − 0.394·24-s − 0.960·25-s + 0.124·26-s + 1.07·27-s + 0.232·28-s + 0.475·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3971 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3971 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3971\)    =    \(11 \cdot 19^{2}\)
Sign: $1$
Analytic conductor: \(31.7085\)
Root analytic conductor: \(5.63103\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 3971,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.4902338273\)
\(L(\frac12)\) \(\approx\) \(0.4902338273\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad11 \( 1 + T \)
19 \( 1 \)
good2 \( 1 + 0.396T + 2T^{2} \)
3 \( 1 + 1.26T + 3T^{2} \)
5 \( 1 - 0.441T + 5T^{2} \)
7 \( 1 + 0.667T + 7T^{2} \)
13 \( 1 + 1.60T + 13T^{2} \)
17 \( 1 - 4.05T + 17T^{2} \)
23 \( 1 + 0.374T + 23T^{2} \)
29 \( 1 - 2.56T + 29T^{2} \)
31 \( 1 + 9.01T + 31T^{2} \)
37 \( 1 + 7.24T + 37T^{2} \)
41 \( 1 - 5.08T + 41T^{2} \)
43 \( 1 + 10.0T + 43T^{2} \)
47 \( 1 - 2.07T + 47T^{2} \)
53 \( 1 - 0.326T + 53T^{2} \)
59 \( 1 - 13.8T + 59T^{2} \)
61 \( 1 + 11.0T + 61T^{2} \)
67 \( 1 - 8.12T + 67T^{2} \)
71 \( 1 + 6.38T + 71T^{2} \)
73 \( 1 + 0.131T + 73T^{2} \)
79 \( 1 + 0.269T + 79T^{2} \)
83 \( 1 + 5.76T + 83T^{2} \)
89 \( 1 + 0.985T + 89T^{2} \)
97 \( 1 - 3.37T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.499455759619994681315468585346, −7.80856939657844648833677409761, −7.04670145229956324557738768367, −6.03928798063504233256550014373, −5.41532354478276761321766168753, −4.95962523099110185918423302597, −3.88234264748826357380064326495, −3.07932697147533834143305337925, −1.73598120307268340635087218015, −0.43589813136329832599549602497, 0.43589813136329832599549602497, 1.73598120307268340635087218015, 3.07932697147533834143305337925, 3.88234264748826357380064326495, 4.95962523099110185918423302597, 5.41532354478276761321766168753, 6.03928798063504233256550014373, 7.04670145229956324557738768367, 7.80856939657844648833677409761, 8.499455759619994681315468585346

Graph of the $Z$-function along the critical line