L(s) = 1 | + (−11.8 + 11.8i)3-s + (19.8 + 19.8i)7-s − 197. i·9-s + 184.·11-s + (−189. + 189. i)13-s + (−34.2 − 34.2i)17-s + 474. i·19-s − 467.·21-s + (−409. + 409. i)23-s + (1.38e3 + 1.38e3i)27-s + 349. i·29-s − 1.52e3·31-s + (−2.18e3 + 2.18e3i)33-s + (−85.2 − 85.2i)37-s − 4.48e3i·39-s + ⋯ |
L(s) = 1 | + (−1.31 + 1.31i)3-s + (0.404 + 0.404i)7-s − 2.44i·9-s + 1.52·11-s + (−1.12 + 1.12i)13-s + (−0.118 − 0.118i)17-s + 1.31i·19-s − 1.06·21-s + (−0.773 + 0.773i)23-s + (1.89 + 1.89i)27-s + 0.415i·29-s − 1.58·31-s + (−2.00 + 2.00i)33-s + (−0.0622 − 0.0622i)37-s − 2.94i·39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.525 + 0.850i)\, \overline{\Lambda}(5-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 400 ^{s/2} \, \Gamma_{\C}(s+2) \, L(s)\cr =\mathstrut & (-0.525 + 0.850i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{5}{2})\) |
\(\approx\) |
\(0.4479250802\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.4479250802\) |
\(L(3)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
good | 3 | \( 1 + (11.8 - 11.8i)T - 81iT^{2} \) |
| 7 | \( 1 + (-19.8 - 19.8i)T + 2.40e3iT^{2} \) |
| 11 | \( 1 - 184.T + 1.46e4T^{2} \) |
| 13 | \( 1 + (189. - 189. i)T - 2.85e4iT^{2} \) |
| 17 | \( 1 + (34.2 + 34.2i)T + 8.35e4iT^{2} \) |
| 19 | \( 1 - 474. iT - 1.30e5T^{2} \) |
| 23 | \( 1 + (409. - 409. i)T - 2.79e5iT^{2} \) |
| 29 | \( 1 - 349. iT - 7.07e5T^{2} \) |
| 31 | \( 1 + 1.52e3T + 9.23e5T^{2} \) |
| 37 | \( 1 + (85.2 + 85.2i)T + 1.87e6iT^{2} \) |
| 41 | \( 1 - 1.30e3T + 2.82e6T^{2} \) |
| 43 | \( 1 + (-393. + 393. i)T - 3.41e6iT^{2} \) |
| 47 | \( 1 + (-2.24e3 - 2.24e3i)T + 4.87e6iT^{2} \) |
| 53 | \( 1 + (-989. + 989. i)T - 7.89e6iT^{2} \) |
| 59 | \( 1 - 558. iT - 1.21e7T^{2} \) |
| 61 | \( 1 + 3.48e3T + 1.38e7T^{2} \) |
| 67 | \( 1 + (2.67e3 + 2.67e3i)T + 2.01e7iT^{2} \) |
| 71 | \( 1 + 3.96e3T + 2.54e7T^{2} \) |
| 73 | \( 1 + (169. - 169. i)T - 2.83e7iT^{2} \) |
| 79 | \( 1 - 4.80e3iT - 3.89e7T^{2} \) |
| 83 | \( 1 + (-3.27e3 + 3.27e3i)T - 4.74e7iT^{2} \) |
| 89 | \( 1 + 8.88e3iT - 6.27e7T^{2} \) |
| 97 | \( 1 + (8.04e3 + 8.04e3i)T + 8.85e7iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.35585947828238597840696592306, −10.37678331295691482116875668622, −9.448278336875816870406585058060, −9.054802111058807613637375883914, −7.31110159447919168803201196189, −6.21707426416967691457615763742, −5.47146884374848515839876647310, −4.39980830041892592087899420875, −3.75960822459243467716151809188, −1.62102422920841957325740218090,
0.17301657358078492920089957064, 1.09873585277115317466800868535, 2.34262661673408208814262187458, 4.33706809800483150994673716193, 5.38434516269740065480258636664, 6.30964042999914157315583522878, 7.16379186602550542405384469036, 7.75410527214562413971104776833, 9.079208708352819959082243372086, 10.42608312751507253596449551627