L(s) = 1 | + (0.809 − 0.587i)3-s + 0.618·7-s + (0.587 + 0.190i)13-s + (−0.951 + 1.30i)19-s + (0.500 − 0.363i)21-s + (−0.309 − 0.951i)23-s + (0.309 + 0.951i)27-s + (1.30 − 0.951i)29-s + (0.587 − 0.809i)31-s + (0.951 + 0.309i)37-s + (0.587 − 0.190i)39-s + 1.61·43-s + (0.5 − 0.363i)47-s − 0.618·49-s + (0.587 + 0.809i)53-s + ⋯ |
L(s) = 1 | + (0.809 − 0.587i)3-s + 0.618·7-s + (0.587 + 0.190i)13-s + (−0.951 + 1.30i)19-s + (0.500 − 0.363i)21-s + (−0.309 − 0.951i)23-s + (0.309 + 0.951i)27-s + (1.30 − 0.951i)29-s + (0.587 − 0.809i)31-s + (0.951 + 0.309i)37-s + (0.587 − 0.190i)39-s + 1.61·43-s + (0.5 − 0.363i)47-s − 0.618·49-s + (0.587 + 0.809i)53-s + ⋯ |
Λ(s)=(=(4000s/2ΓC(s)L(s)(0.944+0.327i)Λ(1−s)
Λ(s)=(=(4000s/2ΓC(s)L(s)(0.944+0.327i)Λ(1−s)
Degree: |
2 |
Conductor: |
4000
= 25⋅53
|
Sign: |
0.944+0.327i
|
Analytic conductor: |
1.99626 |
Root analytic conductor: |
1.41289 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ4000(1599,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 4000, ( :0), 0.944+0.327i)
|
Particular Values
L(21) |
≈ |
1.889162639 |
L(21) |
≈ |
1.889162639 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
good | 3 | 1+(−0.809+0.587i)T+(0.309−0.951i)T2 |
| 7 | 1−0.618T+T2 |
| 11 | 1+(0.809−0.587i)T2 |
| 13 | 1+(−0.587−0.190i)T+(0.809+0.587i)T2 |
| 17 | 1+(−0.309−0.951i)T2 |
| 19 | 1+(0.951−1.30i)T+(−0.309−0.951i)T2 |
| 23 | 1+(0.309+0.951i)T+(−0.809+0.587i)T2 |
| 29 | 1+(−1.30+0.951i)T+(0.309−0.951i)T2 |
| 31 | 1+(−0.587+0.809i)T+(−0.309−0.951i)T2 |
| 37 | 1+(−0.951−0.309i)T+(0.809+0.587i)T2 |
| 41 | 1+(−0.809−0.587i)T2 |
| 43 | 1−1.61T+T2 |
| 47 | 1+(−0.5+0.363i)T+(0.309−0.951i)T2 |
| 53 | 1+(−0.587−0.809i)T+(−0.309+0.951i)T2 |
| 59 | 1+(1.53+0.5i)T+(0.809+0.587i)T2 |
| 61 | 1+(−0.309−0.951i)T+(−0.809+0.587i)T2 |
| 67 | 1+(0.309+0.951i)T2 |
| 71 | 1+(0.363+0.5i)T+(−0.309+0.951i)T2 |
| 73 | 1+(0.951−0.309i)T+(0.809−0.587i)T2 |
| 79 | 1+(0.951+1.30i)T+(−0.309+0.951i)T2 |
| 83 | 1+(0.809+0.587i)T+(0.309+0.951i)T2 |
| 89 | 1+(−0.809+0.587i)T2 |
| 97 | 1+(0.363+0.5i)T+(−0.309+0.951i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.430601477412977584209181480981, −7.969904573658160099611367251526, −7.39470215694039395949604184349, −6.27787217591316113712092730367, −5.91165909597146668772925994439, −4.56082731000933934018348751862, −4.12213048971615044049750113282, −2.86018878824578382324930078530, −2.20524270959923933514758482634, −1.25963153710636934195951980747,
1.20983687566452471654288351110, 2.51635316283310134377849970704, 3.15296087622758479518776470874, 4.16929355113858653926415632414, 4.64895125658658757164976916073, 5.65925443280982623871537556973, 6.49882962617836347972155090496, 7.28588477657767555184509712616, 8.257713957694964951337729259338, 8.589292359362662558456914078596