L(s) = 1 | + (0.809 − 0.587i)3-s + 0.618·7-s + (0.587 + 0.190i)13-s + (−0.951 + 1.30i)19-s + (0.500 − 0.363i)21-s + (−0.309 − 0.951i)23-s + (0.309 + 0.951i)27-s + (1.30 − 0.951i)29-s + (0.587 − 0.809i)31-s + (0.951 + 0.309i)37-s + (0.587 − 0.190i)39-s + 1.61·43-s + (0.5 − 0.363i)47-s − 0.618·49-s + (0.587 + 0.809i)53-s + ⋯ |
L(s) = 1 | + (0.809 − 0.587i)3-s + 0.618·7-s + (0.587 + 0.190i)13-s + (−0.951 + 1.30i)19-s + (0.500 − 0.363i)21-s + (−0.309 − 0.951i)23-s + (0.309 + 0.951i)27-s + (1.30 − 0.951i)29-s + (0.587 − 0.809i)31-s + (0.951 + 0.309i)37-s + (0.587 − 0.190i)39-s + 1.61·43-s + (0.5 − 0.363i)47-s − 0.618·49-s + (0.587 + 0.809i)53-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 4000 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.944 + 0.327i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4000 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.944 + 0.327i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.889162639\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.889162639\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
good | 3 | \( 1 + (-0.809 + 0.587i)T + (0.309 - 0.951i)T^{2} \) |
| 7 | \( 1 - 0.618T + T^{2} \) |
| 11 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 13 | \( 1 + (-0.587 - 0.190i)T + (0.809 + 0.587i)T^{2} \) |
| 17 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 19 | \( 1 + (0.951 - 1.30i)T + (-0.309 - 0.951i)T^{2} \) |
| 23 | \( 1 + (0.309 + 0.951i)T + (-0.809 + 0.587i)T^{2} \) |
| 29 | \( 1 + (-1.30 + 0.951i)T + (0.309 - 0.951i)T^{2} \) |
| 31 | \( 1 + (-0.587 + 0.809i)T + (-0.309 - 0.951i)T^{2} \) |
| 37 | \( 1 + (-0.951 - 0.309i)T + (0.809 + 0.587i)T^{2} \) |
| 41 | \( 1 + (-0.809 - 0.587i)T^{2} \) |
| 43 | \( 1 - 1.61T + T^{2} \) |
| 47 | \( 1 + (-0.5 + 0.363i)T + (0.309 - 0.951i)T^{2} \) |
| 53 | \( 1 + (-0.587 - 0.809i)T + (-0.309 + 0.951i)T^{2} \) |
| 59 | \( 1 + (1.53 + 0.5i)T + (0.809 + 0.587i)T^{2} \) |
| 61 | \( 1 + (-0.309 - 0.951i)T + (-0.809 + 0.587i)T^{2} \) |
| 67 | \( 1 + (0.309 + 0.951i)T^{2} \) |
| 71 | \( 1 + (0.363 + 0.5i)T + (-0.309 + 0.951i)T^{2} \) |
| 73 | \( 1 + (0.951 - 0.309i)T + (0.809 - 0.587i)T^{2} \) |
| 79 | \( 1 + (0.951 + 1.30i)T + (-0.309 + 0.951i)T^{2} \) |
| 83 | \( 1 + (0.809 + 0.587i)T + (0.309 + 0.951i)T^{2} \) |
| 89 | \( 1 + (-0.809 + 0.587i)T^{2} \) |
| 97 | \( 1 + (0.363 + 0.5i)T + (-0.309 + 0.951i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.430601477412977584209181480981, −7.969904573658160099611367251526, −7.39470215694039395949604184349, −6.27787217591316113712092730367, −5.91165909597146668772925994439, −4.56082731000933934018348751862, −4.12213048971615044049750113282, −2.86018878824578382324930078530, −2.20524270959923933514758482634, −1.25963153710636934195951980747,
1.20983687566452471654288351110, 2.51635316283310134377849970704, 3.15296087622758479518776470874, 4.16929355113858653926415632414, 4.64895125658658757164976916073, 5.65925443280982623871537556973, 6.49882962617836347972155090496, 7.28588477657767555184509712616, 8.257713957694964951337729259338, 8.589292359362662558456914078596