Properties

Label 2-4000-8.5-c1-0-27
Degree $2$
Conductor $4000$
Sign $-0.260 - 0.965i$
Analytic cond. $31.9401$
Root an. cond. $5.65156$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.513i·3-s − 1.12·7-s + 2.73·9-s + 3.99i·11-s + 1.12i·13-s + 2.93·17-s + 3.24i·19-s − 0.579i·21-s + 5.39·23-s + 2.94i·27-s + 7.35i·29-s − 7.19·31-s − 2.05·33-s − 10.6i·37-s − 0.576·39-s + ⋯
L(s)  = 1  + 0.296i·3-s − 0.426·7-s + 0.912·9-s + 1.20i·11-s + 0.311i·13-s + 0.713·17-s + 0.743i·19-s − 0.126i·21-s + 1.12·23-s + 0.566i·27-s + 1.36i·29-s − 1.29·31-s − 0.357·33-s − 1.74i·37-s − 0.0923·39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4000 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.260 - 0.965i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4000 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.260 - 0.965i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4000\)    =    \(2^{5} \cdot 5^{3}\)
Sign: $-0.260 - 0.965i$
Analytic conductor: \(31.9401\)
Root analytic conductor: \(5.65156\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{4000} (2001, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 4000,\ (\ :1/2),\ -0.260 - 0.965i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.694269392\)
\(L(\frac12)\) \(\approx\) \(1.694269392\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
good3 \( 1 - 0.513iT - 3T^{2} \)
7 \( 1 + 1.12T + 7T^{2} \)
11 \( 1 - 3.99iT - 11T^{2} \)
13 \( 1 - 1.12iT - 13T^{2} \)
17 \( 1 - 2.93T + 17T^{2} \)
19 \( 1 - 3.24iT - 19T^{2} \)
23 \( 1 - 5.39T + 23T^{2} \)
29 \( 1 - 7.35iT - 29T^{2} \)
31 \( 1 + 7.19T + 31T^{2} \)
37 \( 1 + 10.6iT - 37T^{2} \)
41 \( 1 - 2.08T + 41T^{2} \)
43 \( 1 + 6.26iT - 43T^{2} \)
47 \( 1 + 2.24T + 47T^{2} \)
53 \( 1 - 1.64iT - 53T^{2} \)
59 \( 1 - 5.55iT - 59T^{2} \)
61 \( 1 + 6.65iT - 61T^{2} \)
67 \( 1 - 6.79iT - 67T^{2} \)
71 \( 1 - 3.27T + 71T^{2} \)
73 \( 1 - 6.97T + 73T^{2} \)
79 \( 1 + 8.60T + 79T^{2} \)
83 \( 1 - 13.4iT - 83T^{2} \)
89 \( 1 + 10.9T + 89T^{2} \)
97 \( 1 - 18.6T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.920143174993065417690150633372, −7.70083980673035652881735308931, −7.21074619455809283939682021105, −6.66613837762899650284157075936, −5.52778571415985670818300735440, −4.95006497173334741326292456849, −4.00053746121733799513036990331, −3.44529258568367894657878184796, −2.17531639147917541292883055200, −1.28235258219503554861199290963, 0.52312397280325900042471801986, 1.50838601524520330227909747796, 2.84414517113314014830536619361, 3.42634486215447078799071590672, 4.46213086393710615552931071448, 5.28464014146204934558139208633, 6.15415618446642476157125486598, 6.71394432380531236558854849892, 7.54857410115886739008505352788, 8.133267047091115264411502045950

Graph of the $Z$-function along the critical line