Properties

Label 2-4000-40.29-c1-0-10
Degree $2$
Conductor $4000$
Sign $-0.937 - 0.349i$
Analytic cond. $31.9401$
Root an. cond. $5.65156$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.83·3-s + 1.31i·7-s + 0.368·9-s + 6.60i·11-s − 2.96·13-s − 2.69i·17-s + 4.97i·19-s + 2.41i·21-s − 3.73i·23-s − 4.83·27-s − 5.52i·29-s − 8.36·31-s + 12.1i·33-s − 7.19·37-s − 5.44·39-s + ⋯
L(s)  = 1  + 1.05·3-s + 0.497i·7-s + 0.122·9-s + 1.99i·11-s − 0.822·13-s − 0.653i·17-s + 1.14i·19-s + 0.526i·21-s − 0.779i·23-s − 0.929·27-s − 1.02i·29-s − 1.50·31-s + 2.10i·33-s − 1.18·37-s − 0.871·39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4000 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.937 - 0.349i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4000 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.937 - 0.349i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4000\)    =    \(2^{5} \cdot 5^{3}\)
Sign: $-0.937 - 0.349i$
Analytic conductor: \(31.9401\)
Root analytic conductor: \(5.65156\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{4000} (3249, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 4000,\ (\ :1/2),\ -0.937 - 0.349i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.059555689\)
\(L(\frac12)\) \(\approx\) \(1.059555689\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
good3 \( 1 - 1.83T + 3T^{2} \)
7 \( 1 - 1.31iT - 7T^{2} \)
11 \( 1 - 6.60iT - 11T^{2} \)
13 \( 1 + 2.96T + 13T^{2} \)
17 \( 1 + 2.69iT - 17T^{2} \)
19 \( 1 - 4.97iT - 19T^{2} \)
23 \( 1 + 3.73iT - 23T^{2} \)
29 \( 1 + 5.52iT - 29T^{2} \)
31 \( 1 + 8.36T + 31T^{2} \)
37 \( 1 + 7.19T + 37T^{2} \)
41 \( 1 + 3.77T + 41T^{2} \)
43 \( 1 - 3.07T + 43T^{2} \)
47 \( 1 - 8.77iT - 47T^{2} \)
53 \( 1 - 0.0464T + 53T^{2} \)
59 \( 1 + 1.02iT - 59T^{2} \)
61 \( 1 + 5.23iT - 61T^{2} \)
67 \( 1 + 10.8T + 67T^{2} \)
71 \( 1 + 9.35T + 71T^{2} \)
73 \( 1 + 12.4iT - 73T^{2} \)
79 \( 1 - 1.43T + 79T^{2} \)
83 \( 1 - 13.0T + 83T^{2} \)
89 \( 1 + 3.94T + 89T^{2} \)
97 \( 1 - 1.00iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.988020713727945783066177076174, −7.82104731018427409906300698164, −7.60984625798170381980020174938, −6.78145830510937831189843846255, −5.76123090026713373513833624323, −4.90502016626414341744351006627, −4.20037869614001222795844609501, −3.23053932305011817361526909697, −2.27949658256324284503006077260, −1.88332490497894619239394099518, 0.23075089552270524924905819615, 1.61168736959472412720006747829, 2.75440784689415094341436710063, 3.37530040623848461754143949642, 3.98104920087643103623861789145, 5.26007307465514856037528404791, 5.76265952973458916114202412483, 6.92566664334379138470708631949, 7.42084083590489407245530206057, 8.303924271145831696559357579450

Graph of the $Z$-function along the critical line