L(s) = 1 | + 1.83·3-s + 1.31i·7-s + 0.368·9-s + 6.60i·11-s − 2.96·13-s − 2.69i·17-s + 4.97i·19-s + 2.41i·21-s − 3.73i·23-s − 4.83·27-s − 5.52i·29-s − 8.36·31-s + 12.1i·33-s − 7.19·37-s − 5.44·39-s + ⋯ |
L(s) = 1 | + 1.05·3-s + 0.497i·7-s + 0.122·9-s + 1.99i·11-s − 0.822·13-s − 0.653i·17-s + 1.14i·19-s + 0.526i·21-s − 0.779i·23-s − 0.929·27-s − 1.02i·29-s − 1.50·31-s + 2.10i·33-s − 1.18·37-s − 0.871·39-s + ⋯ |
Λ(s)=(=(4000s/2ΓC(s)L(s)(−0.937−0.349i)Λ(2−s)
Λ(s)=(=(4000s/2ΓC(s+1/2)L(s)(−0.937−0.349i)Λ(1−s)
Degree: |
2 |
Conductor: |
4000
= 25⋅53
|
Sign: |
−0.937−0.349i
|
Analytic conductor: |
31.9401 |
Root analytic conductor: |
5.65156 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ4000(3249,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 4000, ( :1/2), −0.937−0.349i)
|
Particular Values
L(1) |
≈ |
1.059555689 |
L(21) |
≈ |
1.059555689 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
good | 3 | 1−1.83T+3T2 |
| 7 | 1−1.31iT−7T2 |
| 11 | 1−6.60iT−11T2 |
| 13 | 1+2.96T+13T2 |
| 17 | 1+2.69iT−17T2 |
| 19 | 1−4.97iT−19T2 |
| 23 | 1+3.73iT−23T2 |
| 29 | 1+5.52iT−29T2 |
| 31 | 1+8.36T+31T2 |
| 37 | 1+7.19T+37T2 |
| 41 | 1+3.77T+41T2 |
| 43 | 1−3.07T+43T2 |
| 47 | 1−8.77iT−47T2 |
| 53 | 1−0.0464T+53T2 |
| 59 | 1+1.02iT−59T2 |
| 61 | 1+5.23iT−61T2 |
| 67 | 1+10.8T+67T2 |
| 71 | 1+9.35T+71T2 |
| 73 | 1+12.4iT−73T2 |
| 79 | 1−1.43T+79T2 |
| 83 | 1−13.0T+83T2 |
| 89 | 1+3.94T+89T2 |
| 97 | 1−1.00iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.988020713727945783066177076174, −7.82104731018427409906300698164, −7.60984625798170381980020174938, −6.78145830510937831189843846255, −5.76123090026713373513833624323, −4.90502016626414341744351006627, −4.20037869614001222795844609501, −3.23053932305011817361526909697, −2.27949658256324284503006077260, −1.88332490497894619239394099518,
0.23075089552270524924905819615, 1.61168736959472412720006747829, 2.75440784689415094341436710063, 3.37530040623848461754143949642, 3.98104920087643103623861789145, 5.26007307465514856037528404791, 5.76265952973458916114202412483, 6.92566664334379138470708631949, 7.42084083590489407245530206057, 8.303924271145831696559357579450