L(s) = 1 | + (−1.62 + 1.36i)2-s + (0.432 − 2.45i)4-s + (−0.939 + 0.342i)5-s + (−0.0109 − 0.0622i)7-s + (0.522 + 0.904i)8-s + (1.05 − 1.83i)10-s + (1.08 + 0.395i)11-s + (−4.71 − 3.95i)13-s + (0.102 + 0.0861i)14-s + (2.60 + 0.947i)16-s + (1.03 − 1.79i)17-s + (0.296 + 0.512i)19-s + (0.432 + 2.45i)20-s + (−2.30 + 0.838i)22-s + (1.29 − 7.34i)23-s + ⋯ |
L(s) = 1 | + (−1.14 + 0.963i)2-s + (0.216 − 1.22i)4-s + (−0.420 + 0.152i)5-s + (−0.00414 − 0.0235i)7-s + (0.184 + 0.319i)8-s + (0.335 − 0.580i)10-s + (0.327 + 0.119i)11-s + (−1.30 − 1.09i)13-s + (0.0274 + 0.0230i)14-s + (0.650 + 0.236i)16-s + (0.251 − 0.435i)17-s + (0.0679 + 0.117i)19-s + (0.0967 + 0.548i)20-s + (−0.491 + 0.178i)22-s + (0.270 − 1.53i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 405 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.925 + 0.379i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 405 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.925 + 0.379i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.496184 - 0.0978846i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.496184 - 0.0978846i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 + (0.939 - 0.342i)T \) |
good | 2 | \( 1 + (1.62 - 1.36i)T + (0.347 - 1.96i)T^{2} \) |
| 7 | \( 1 + (0.0109 + 0.0622i)T + (-6.57 + 2.39i)T^{2} \) |
| 11 | \( 1 + (-1.08 - 0.395i)T + (8.42 + 7.07i)T^{2} \) |
| 13 | \( 1 + (4.71 + 3.95i)T + (2.25 + 12.8i)T^{2} \) |
| 17 | \( 1 + (-1.03 + 1.79i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-0.296 - 0.512i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-1.29 + 7.34i)T + (-21.6 - 7.86i)T^{2} \) |
| 29 | \( 1 + (-1.76 + 1.48i)T + (5.03 - 28.5i)T^{2} \) |
| 31 | \( 1 + (-1.49 + 8.45i)T + (-29.1 - 10.6i)T^{2} \) |
| 37 | \( 1 + (2.17 - 3.75i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (-5.08 - 4.27i)T + (7.11 + 40.3i)T^{2} \) |
| 43 | \( 1 + (-10.3 - 3.77i)T + (32.9 + 27.6i)T^{2} \) |
| 47 | \( 1 + (1.02 + 5.81i)T + (-44.1 + 16.0i)T^{2} \) |
| 53 | \( 1 + 0.617T + 53T^{2} \) |
| 59 | \( 1 + (10.3 - 3.76i)T + (45.1 - 37.9i)T^{2} \) |
| 61 | \( 1 + (2.06 + 11.7i)T + (-57.3 + 20.8i)T^{2} \) |
| 67 | \( 1 + (3.61 + 3.03i)T + (11.6 + 65.9i)T^{2} \) |
| 71 | \( 1 + (-1.42 + 2.47i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + (-1.45 - 2.52i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (3.93 - 3.30i)T + (13.7 - 77.7i)T^{2} \) |
| 83 | \( 1 + (-2.57 + 2.15i)T + (14.4 - 81.7i)T^{2} \) |
| 89 | \( 1 + (5.76 + 9.99i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (12.0 + 4.40i)T + (74.3 + 62.3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.84643318387527566448036793502, −9.997837160087313792760482511056, −9.325719657538352912072158359851, −8.197739158273999952137905581963, −7.64896326590679708144616386561, −6.79900286010519819584297974735, −5.78083355428124473511898516206, −4.47905939438653467830461960835, −2.79836183844296970095216405361, −0.51596461144070378855184350600,
1.40306976893942502551569179314, 2.76012783872337882577593478991, 4.08203056665920243210017125521, 5.45499964121780083370878935383, 7.05655429112159024110501090272, 7.79392110748525763803912637477, 9.032877600297216469465505727298, 9.325456317674453669361245139803, 10.44223405174832254654688903905, 11.15093428886670813365918182714