L(s) = 1 | + (−0.405 + 2.19i)5-s + 3.23i·7-s + 1.54·11-s + 6.47i·13-s + 7.55i·17-s + 1.20·19-s + i·23-s + (−4.67 − 1.78i)25-s + 1.14·29-s − 6.97·31-s + (−7.10 − 1.31i)35-s + 5.33i·37-s + 7.35·41-s + 3.63i·43-s − 10.3i·47-s + ⋯ |
L(s) = 1 | + (−0.181 + 0.983i)5-s + 1.22i·7-s + 0.464·11-s + 1.79i·13-s + 1.83i·17-s + 0.277·19-s + 0.208i·23-s + (−0.934 − 0.356i)25-s + 0.211·29-s − 1.25·31-s + (−1.20 − 0.221i)35-s + 0.877i·37-s + 1.14·41-s + 0.554i·43-s − 1.50i·47-s + ⋯ |
Λ(s)=(=(4140s/2ΓC(s)L(s)(−0.983−0.181i)Λ(2−s)
Λ(s)=(=(4140s/2ΓC(s+1/2)L(s)(−0.983−0.181i)Λ(1−s)
Degree: |
2 |
Conductor: |
4140
= 22⋅32⋅5⋅23
|
Sign: |
−0.983−0.181i
|
Analytic conductor: |
33.0580 |
Root analytic conductor: |
5.74961 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ4140(829,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 4140, ( :1/2), −0.983−0.181i)
|
Particular Values
L(1) |
≈ |
1.610675030 |
L(21) |
≈ |
1.610675030 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1+(0.405−2.19i)T |
| 23 | 1−iT |
good | 7 | 1−3.23iT−7T2 |
| 11 | 1−1.54T+11T2 |
| 13 | 1−6.47iT−13T2 |
| 17 | 1−7.55iT−17T2 |
| 19 | 1−1.20T+19T2 |
| 29 | 1−1.14T+29T2 |
| 31 | 1+6.97T+31T2 |
| 37 | 1−5.33iT−37T2 |
| 41 | 1−7.35T+41T2 |
| 43 | 1−3.63iT−43T2 |
| 47 | 1+10.3iT−47T2 |
| 53 | 1−3.16iT−53T2 |
| 59 | 1−8.15T+59T2 |
| 61 | 1−0.160T+61T2 |
| 67 | 1+15.1iT−67T2 |
| 71 | 1−3.24T+71T2 |
| 73 | 1+9.51iT−73T2 |
| 79 | 1−10.9T+79T2 |
| 83 | 1−3.26iT−83T2 |
| 89 | 1−15.5T+89T2 |
| 97 | 1+9.21iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.872989383164409264593817299063, −8.051533148653196585923443281873, −7.23470705638931317577581981751, −6.32023612803338911279219611137, −6.18812998334913037474845765414, −5.07705953879800500778526527771, −4.01874362768357286045671369852, −3.47422371877217890140562727036, −2.26989075125737377128920439161, −1.74006149647777357861298374175,
0.53683687832155513978115138460, 1.02108185001736288278435560201, 2.55640106304028548719251033346, 3.58005386985303398275008998149, 4.23715758469268237149434553739, 5.16483531381594324791138482859, 5.58534342520136672793057461824, 6.77445153124924127909779610060, 7.60062098169137465578135988590, 7.79484677334856072527561612582