L(s) = 1 | + (−0.405 + 2.19i)5-s + 3.23i·7-s + 1.54·11-s + 6.47i·13-s + 7.55i·17-s + 1.20·19-s + i·23-s + (−4.67 − 1.78i)25-s + 1.14·29-s − 6.97·31-s + (−7.10 − 1.31i)35-s + 5.33i·37-s + 7.35·41-s + 3.63i·43-s − 10.3i·47-s + ⋯ |
L(s) = 1 | + (−0.181 + 0.983i)5-s + 1.22i·7-s + 0.464·11-s + 1.79i·13-s + 1.83i·17-s + 0.277·19-s + 0.208i·23-s + (−0.934 − 0.356i)25-s + 0.211·29-s − 1.25·31-s + (−1.20 − 0.221i)35-s + 0.877i·37-s + 1.14·41-s + 0.554i·43-s − 1.50i·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 4140 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.983 - 0.181i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4140 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.983 - 0.181i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.610675030\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.610675030\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (0.405 - 2.19i)T \) |
| 23 | \( 1 - iT \) |
good | 7 | \( 1 - 3.23iT - 7T^{2} \) |
| 11 | \( 1 - 1.54T + 11T^{2} \) |
| 13 | \( 1 - 6.47iT - 13T^{2} \) |
| 17 | \( 1 - 7.55iT - 17T^{2} \) |
| 19 | \( 1 - 1.20T + 19T^{2} \) |
| 29 | \( 1 - 1.14T + 29T^{2} \) |
| 31 | \( 1 + 6.97T + 31T^{2} \) |
| 37 | \( 1 - 5.33iT - 37T^{2} \) |
| 41 | \( 1 - 7.35T + 41T^{2} \) |
| 43 | \( 1 - 3.63iT - 43T^{2} \) |
| 47 | \( 1 + 10.3iT - 47T^{2} \) |
| 53 | \( 1 - 3.16iT - 53T^{2} \) |
| 59 | \( 1 - 8.15T + 59T^{2} \) |
| 61 | \( 1 - 0.160T + 61T^{2} \) |
| 67 | \( 1 + 15.1iT - 67T^{2} \) |
| 71 | \( 1 - 3.24T + 71T^{2} \) |
| 73 | \( 1 + 9.51iT - 73T^{2} \) |
| 79 | \( 1 - 10.9T + 79T^{2} \) |
| 83 | \( 1 - 3.26iT - 83T^{2} \) |
| 89 | \( 1 - 15.5T + 89T^{2} \) |
| 97 | \( 1 + 9.21iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.872989383164409264593817299063, −8.051533148653196585923443281873, −7.23470705638931317577581981751, −6.32023612803338911279219611137, −6.18812998334913037474845765414, −5.07705953879800500778526527771, −4.01874362768357286045671369852, −3.47422371877217890140562727036, −2.26989075125737377128920439161, −1.74006149647777357861298374175,
0.53683687832155513978115138460, 1.02108185001736288278435560201, 2.55640106304028548719251033346, 3.58005386985303398275008998149, 4.23715758469268237149434553739, 5.16483531381594324791138482859, 5.58534342520136672793057461824, 6.77445153124924127909779610060, 7.60062098169137465578135988590, 7.79484677334856072527561612582