Properties

Label 2-4140-5.4-c1-0-2
Degree $2$
Conductor $4140$
Sign $-0.983 - 0.181i$
Analytic cond. $33.0580$
Root an. cond. $5.74961$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.405 − 2.19i)5-s + 3.23i·7-s − 1.54·11-s + 6.47i·13-s − 7.55i·17-s + 1.20·19-s i·23-s + (−4.67 − 1.78i)25-s − 1.14·29-s − 6.97·31-s + (7.10 + 1.31i)35-s + 5.33i·37-s − 7.35·41-s + 3.63i·43-s + 10.3i·47-s + ⋯
L(s)  = 1  + (0.181 − 0.983i)5-s + 1.22i·7-s − 0.464·11-s + 1.79i·13-s − 1.83i·17-s + 0.277·19-s − 0.208i·23-s + (−0.934 − 0.356i)25-s − 0.211·29-s − 1.25·31-s + (1.20 + 0.221i)35-s + 0.877i·37-s − 1.14·41-s + 0.554i·43-s + 1.50i·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4140 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.983 - 0.181i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4140 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.983 - 0.181i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4140\)    =    \(2^{2} \cdot 3^{2} \cdot 5 \cdot 23\)
Sign: $-0.983 - 0.181i$
Analytic conductor: \(33.0580\)
Root analytic conductor: \(5.74961\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{4140} (829, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 4140,\ (\ :1/2),\ -0.983 - 0.181i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.1942636590\)
\(L(\frac12)\) \(\approx\) \(0.1942636590\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + (-0.405 + 2.19i)T \)
23 \( 1 + iT \)
good7 \( 1 - 3.23iT - 7T^{2} \)
11 \( 1 + 1.54T + 11T^{2} \)
13 \( 1 - 6.47iT - 13T^{2} \)
17 \( 1 + 7.55iT - 17T^{2} \)
19 \( 1 - 1.20T + 19T^{2} \)
29 \( 1 + 1.14T + 29T^{2} \)
31 \( 1 + 6.97T + 31T^{2} \)
37 \( 1 - 5.33iT - 37T^{2} \)
41 \( 1 + 7.35T + 41T^{2} \)
43 \( 1 - 3.63iT - 43T^{2} \)
47 \( 1 - 10.3iT - 47T^{2} \)
53 \( 1 + 3.16iT - 53T^{2} \)
59 \( 1 + 8.15T + 59T^{2} \)
61 \( 1 - 0.160T + 61T^{2} \)
67 \( 1 + 15.1iT - 67T^{2} \)
71 \( 1 + 3.24T + 71T^{2} \)
73 \( 1 + 9.51iT - 73T^{2} \)
79 \( 1 - 10.9T + 79T^{2} \)
83 \( 1 + 3.26iT - 83T^{2} \)
89 \( 1 + 15.5T + 89T^{2} \)
97 \( 1 + 9.21iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.968796920593463773742191862424, −8.150085270756566031936499038280, −7.33553038268707147529037586111, −6.50080297488980830238667419498, −5.71454321587756098142714416372, −4.92044003766219723342243504457, −4.58600037916135564557636902474, −3.26454042124610157914849916071, −2.30625722223189211123695811689, −1.52779791736151002113205937555, 0.05226301547639768587862429367, 1.44667244696725830634984769924, 2.58306346433145803124600808933, 3.61594372593802534436942129512, 3.87188710127314706725863691943, 5.33967926820519200830979682489, 5.76603236744414168855960955760, 6.74284729441168765066622902030, 7.38645536284637660464929951761, 7.904049003364759680203528944413

Graph of the $Z$-function along the critical line