L(s) = 1 | − 2.08i·2-s + (1.31 + 1.31i)3-s − 2.34·4-s + (2.73 − 2.73i)6-s + (0.971 − 0.971i)7-s + 0.713i·8-s + 0.435i·9-s + (−0.384 + 0.384i)11-s + (−3.07 − 3.07i)12-s + 5.39·13-s + (−2.02 − 2.02i)14-s − 3.19·16-s + (2.36 + 3.38i)17-s + 0.907·18-s − 4.86i·19-s + ⋯ |
L(s) = 1 | − 1.47i·2-s + (0.756 + 0.756i)3-s − 1.17·4-s + (1.11 − 1.11i)6-s + (0.367 − 0.367i)7-s + 0.252i·8-s + 0.145i·9-s + (−0.116 + 0.116i)11-s + (−0.886 − 0.886i)12-s + 1.49·13-s + (−0.541 − 0.541i)14-s − 0.799·16-s + (0.572 + 0.819i)17-s + 0.213·18-s − 1.11i·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 425 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0534 + 0.998i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 425 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.0534 + 0.998i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.25877 - 1.32795i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.25877 - 1.32795i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 17 | \( 1 + (-2.36 - 3.38i)T \) |
good | 2 | \( 1 + 2.08iT - 2T^{2} \) |
| 3 | \( 1 + (-1.31 - 1.31i)T + 3iT^{2} \) |
| 7 | \( 1 + (-0.971 + 0.971i)T - 7iT^{2} \) |
| 11 | \( 1 + (0.384 - 0.384i)T - 11iT^{2} \) |
| 13 | \( 1 - 5.39T + 13T^{2} \) |
| 19 | \( 1 + 4.86iT - 19T^{2} \) |
| 23 | \( 1 + (1.26 - 1.26i)T - 23iT^{2} \) |
| 29 | \( 1 + (-1.29 - 1.29i)T + 29iT^{2} \) |
| 31 | \( 1 + (5.73 + 5.73i)T + 31iT^{2} \) |
| 37 | \( 1 + (4.22 + 4.22i)T + 37iT^{2} \) |
| 41 | \( 1 + (2.70 - 2.70i)T - 41iT^{2} \) |
| 43 | \( 1 - 3.66iT - 43T^{2} \) |
| 47 | \( 1 - 9.07T + 47T^{2} \) |
| 53 | \( 1 - 10.5iT - 53T^{2} \) |
| 59 | \( 1 - 6.52iT - 59T^{2} \) |
| 61 | \( 1 + (10.9 - 10.9i)T - 61iT^{2} \) |
| 67 | \( 1 + 5.68T + 67T^{2} \) |
| 71 | \( 1 + (-0.749 - 0.749i)T + 71iT^{2} \) |
| 73 | \( 1 + (10.3 + 10.3i)T + 73iT^{2} \) |
| 79 | \( 1 + (0.878 - 0.878i)T - 79iT^{2} \) |
| 83 | \( 1 - 13.5iT - 83T^{2} \) |
| 89 | \( 1 + 0.989T + 89T^{2} \) |
| 97 | \( 1 + (8.05 + 8.05i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.75136064196120114188115288970, −10.34904772791800502710791980765, −9.189060151154244291075400732752, −8.805736256233870287102505428270, −7.52710016257943327203316753492, −6.01162831805840671925921710958, −4.39233665642041340413505496754, −3.77383242639562350000789181478, −2.81962901234300191851026446592, −1.33355272478612962401680801780,
1.81281971701755226449434383201, 3.43778967212871711027567830674, 5.06064141975667493243926560242, 5.92305136903408444283396091701, 6.90760516253253399157257802697, 7.72461100060564803808713142199, 8.447789447184201059949885903023, 8.893481162579636768617136319396, 10.37620022183034305648885246708, 11.52103087547918781841369091087