L(s) = 1 | + 1.44i·2-s + (1.14 + 1.14i)3-s − 0.0943·4-s + (−1.65 + 1.65i)6-s + (2.69 − 2.69i)7-s + 2.75i·8-s − 0.370i·9-s + (−4.34 + 4.34i)11-s + (−0.108 − 0.108i)12-s + 2.56·13-s + (3.90 + 3.90i)14-s − 4.17·16-s + (3.45 + 2.25i)17-s + 0.535·18-s − 1.17i·19-s + ⋯ |
L(s) = 1 | + 1.02i·2-s + (0.662 + 0.662i)3-s − 0.0471·4-s + (−0.677 + 0.677i)6-s + (1.01 − 1.01i)7-s + 0.975i·8-s − 0.123i·9-s + (−1.31 + 1.31i)11-s + (−0.0312 − 0.0312i)12-s + 0.712·13-s + (1.04 + 1.04i)14-s − 1.04·16-s + (0.837 + 0.546i)17-s + 0.126·18-s − 0.268i·19-s + ⋯ |
Λ(s)=(=(425s/2ΓC(s)L(s)(−0.323−0.946i)Λ(2−s)
Λ(s)=(=(425s/2ΓC(s+1/2)L(s)(−0.323−0.946i)Λ(1−s)
Degree: |
2 |
Conductor: |
425
= 52⋅17
|
Sign: |
−0.323−0.946i
|
Analytic conductor: |
3.39364 |
Root analytic conductor: |
1.84218 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ425(251,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 425, ( :1/2), −0.323−0.946i)
|
Particular Values
L(1) |
≈ |
1.15276+1.61207i |
L(21) |
≈ |
1.15276+1.61207i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 17 | 1+(−3.45−2.25i)T |
good | 2 | 1−1.44iT−2T2 |
| 3 | 1+(−1.14−1.14i)T+3iT2 |
| 7 | 1+(−2.69+2.69i)T−7iT2 |
| 11 | 1+(4.34−4.34i)T−11iT2 |
| 13 | 1−2.56T+13T2 |
| 19 | 1+1.17iT−19T2 |
| 23 | 1+(2.53−2.53i)T−23iT2 |
| 29 | 1+(3.70+3.70i)T+29iT2 |
| 31 | 1+(0.394+0.394i)T+31iT2 |
| 37 | 1+(5.28+5.28i)T+37iT2 |
| 41 | 1+(−5.35+5.35i)T−41iT2 |
| 43 | 1+0.774iT−43T2 |
| 47 | 1+4.35T+47T2 |
| 53 | 1+2.36iT−53T2 |
| 59 | 1+12.8iT−59T2 |
| 61 | 1+(3.29−3.29i)T−61iT2 |
| 67 | 1−2.97T+67T2 |
| 71 | 1+(5.97+5.97i)T+71iT2 |
| 73 | 1+(−11.8−11.8i)T+73iT2 |
| 79 | 1+(8.09−8.09i)T−79iT2 |
| 83 | 1+5.07iT−83T2 |
| 89 | 1−8.16T+89T2 |
| 97 | 1+(−5.16−5.16i)T+97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.17420242209977652226438458364, −10.46042471812034948817667960545, −9.599908661214685766340455896180, −8.341149325795085322106939068641, −7.78019026413272347754176913525, −7.08443874357816554384946871464, −5.70795990995273183425861186695, −4.74142250743265467706583059439, −3.73090942394239693437946802141, −2.05266271660104069332269535591,
1.43050939773521367587640350199, 2.52679844393801244346181426905, 3.27571125808881206486213684521, 5.06245547181340853119024272450, 6.05876625857836852627506870182, 7.56352408064781206025976111318, 8.228802298829311473723498467548, 8.951358682220416187696009733566, 10.32995437726502018856885192454, 11.01302443433801000365185691218