L(s) = 1 | + 1.44i·2-s + (1.14 + 1.14i)3-s − 0.0943·4-s + (−1.65 + 1.65i)6-s + (2.69 − 2.69i)7-s + 2.75i·8-s − 0.370i·9-s + (−4.34 + 4.34i)11-s + (−0.108 − 0.108i)12-s + 2.56·13-s + (3.90 + 3.90i)14-s − 4.17·16-s + (3.45 + 2.25i)17-s + 0.535·18-s − 1.17i·19-s + ⋯ |
L(s) = 1 | + 1.02i·2-s + (0.662 + 0.662i)3-s − 0.0471·4-s + (−0.677 + 0.677i)6-s + (1.01 − 1.01i)7-s + 0.975i·8-s − 0.123i·9-s + (−1.31 + 1.31i)11-s + (−0.0312 − 0.0312i)12-s + 0.712·13-s + (1.04 + 1.04i)14-s − 1.04·16-s + (0.837 + 0.546i)17-s + 0.126·18-s − 0.268i·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 425 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.323 - 0.946i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 425 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.323 - 0.946i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.15276 + 1.61207i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.15276 + 1.61207i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 17 | \( 1 + (-3.45 - 2.25i)T \) |
good | 2 | \( 1 - 1.44iT - 2T^{2} \) |
| 3 | \( 1 + (-1.14 - 1.14i)T + 3iT^{2} \) |
| 7 | \( 1 + (-2.69 + 2.69i)T - 7iT^{2} \) |
| 11 | \( 1 + (4.34 - 4.34i)T - 11iT^{2} \) |
| 13 | \( 1 - 2.56T + 13T^{2} \) |
| 19 | \( 1 + 1.17iT - 19T^{2} \) |
| 23 | \( 1 + (2.53 - 2.53i)T - 23iT^{2} \) |
| 29 | \( 1 + (3.70 + 3.70i)T + 29iT^{2} \) |
| 31 | \( 1 + (0.394 + 0.394i)T + 31iT^{2} \) |
| 37 | \( 1 + (5.28 + 5.28i)T + 37iT^{2} \) |
| 41 | \( 1 + (-5.35 + 5.35i)T - 41iT^{2} \) |
| 43 | \( 1 + 0.774iT - 43T^{2} \) |
| 47 | \( 1 + 4.35T + 47T^{2} \) |
| 53 | \( 1 + 2.36iT - 53T^{2} \) |
| 59 | \( 1 + 12.8iT - 59T^{2} \) |
| 61 | \( 1 + (3.29 - 3.29i)T - 61iT^{2} \) |
| 67 | \( 1 - 2.97T + 67T^{2} \) |
| 71 | \( 1 + (5.97 + 5.97i)T + 71iT^{2} \) |
| 73 | \( 1 + (-11.8 - 11.8i)T + 73iT^{2} \) |
| 79 | \( 1 + (8.09 - 8.09i)T - 79iT^{2} \) |
| 83 | \( 1 + 5.07iT - 83T^{2} \) |
| 89 | \( 1 - 8.16T + 89T^{2} \) |
| 97 | \( 1 + (-5.16 - 5.16i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.17420242209977652226438458364, −10.46042471812034948817667960545, −9.599908661214685766340455896180, −8.341149325795085322106939068641, −7.78019026413272347754176913525, −7.08443874357816554384946871464, −5.70795990995273183425861186695, −4.74142250743265467706583059439, −3.73090942394239693437946802141, −2.05266271660104069332269535591,
1.43050939773521367587640350199, 2.52679844393801244346181426905, 3.27571125808881206486213684521, 5.06245547181340853119024272450, 6.05876625857836852627506870182, 7.56352408064781206025976111318, 8.228802298829311473723498467548, 8.951358682220416187696009733566, 10.32995437726502018856885192454, 11.01302443433801000365185691218