L(s) = 1 | + (0.392 + 0.392i)2-s + (−2.31 + 0.958i)3-s − 1.69i·4-s + (−1.28 − 0.532i)6-s + (−1.54 + 3.72i)7-s + (1.45 − 1.45i)8-s + (2.31 − 2.31i)9-s + (−0.388 − 0.160i)11-s + (1.62 + 3.91i)12-s − 4.96i·13-s + (−2.07 + 0.858i)14-s − 2.24·16-s + (0.676 − 4.06i)17-s + 1.81·18-s + (−3.56 − 3.56i)19-s + ⋯ |
L(s) = 1 | + (0.277 + 0.277i)2-s + (−1.33 + 0.553i)3-s − 0.845i·4-s + (−0.524 − 0.217i)6-s + (−0.583 + 1.40i)7-s + (0.512 − 0.512i)8-s + (0.770 − 0.770i)9-s + (−0.117 − 0.0485i)11-s + (0.467 + 1.12i)12-s − 1.37i·13-s + (−0.553 + 0.229i)14-s − 0.560·16-s + (0.164 − 0.986i)17-s + 0.427·18-s + (−0.817 − 0.817i)19-s + ⋯ |
Λ(s)=(=(425s/2ΓC(s)L(s)(−0.209+0.977i)Λ(2−s)
Λ(s)=(=(425s/2ΓC(s+1/2)L(s)(−0.209+0.977i)Λ(1−s)
Degree: |
2 |
Conductor: |
425
= 52⋅17
|
Sign: |
−0.209+0.977i
|
Analytic conductor: |
3.39364 |
Root analytic conductor: |
1.84218 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ425(376,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 425, ( :1/2), −0.209+0.977i)
|
Particular Values
L(1) |
≈ |
0.277415−0.343230i |
L(21) |
≈ |
0.277415−0.343230i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 17 | 1+(−0.676+4.06i)T |
good | 2 | 1+(−0.392−0.392i)T+2iT2 |
| 3 | 1+(2.31−0.958i)T+(2.12−2.12i)T2 |
| 7 | 1+(1.54−3.72i)T+(−4.94−4.94i)T2 |
| 11 | 1+(0.388+0.160i)T+(7.77+7.77i)T2 |
| 13 | 1+4.96iT−13T2 |
| 19 | 1+(3.56+3.56i)T+19iT2 |
| 23 | 1+(7.44+3.08i)T+(16.2+16.2i)T2 |
| 29 | 1+(0.0710+0.171i)T+(−20.5+20.5i)T2 |
| 31 | 1+(−3.15+1.30i)T+(21.9−21.9i)T2 |
| 37 | 1+(−3.52+1.46i)T+(26.1−26.1i)T2 |
| 41 | 1+(1.49−3.61i)T+(−28.9−28.9i)T2 |
| 43 | 1+(3.64−3.64i)T−43iT2 |
| 47 | 1−6.56iT−47T2 |
| 53 | 1+(0.616+0.616i)T+53iT2 |
| 59 | 1+(−10.1+10.1i)T−59iT2 |
| 61 | 1+(−1.30+3.15i)T+(−43.1−43.1i)T2 |
| 67 | 1+7.21T+67T2 |
| 71 | 1+(6.91−2.86i)T+(50.2−50.2i)T2 |
| 73 | 1+(1.37+3.31i)T+(−51.6+51.6i)T2 |
| 79 | 1+(13.0+5.38i)T+(55.8+55.8i)T2 |
| 83 | 1+(−9.66−9.66i)T+83iT2 |
| 89 | 1−15.1iT−89T2 |
| 97 | 1+(3.88+9.38i)T+(−68.5+68.5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.91589872585281145395638828853, −10.06936082742225571433202756486, −9.498067057291345847051429706579, −8.198359074314996428352868358481, −6.58946005285369288172120259089, −5.96043833019327044272499155189, −5.35180946589548346677194519154, −4.51601485314832559761020369348, −2.64049591438848798792472686972, −0.29548133722556982024477923190,
1.73663167123277917331861910310, 3.77396365253067567946449859665, 4.36742025342853272684269077944, 5.91068977145071595094012526823, 6.76096620236370706363451016166, 7.44036672998628270670515243398, 8.518675066996283767933019198382, 10.09671394016019484474576609775, 10.65562035571181560415556043395, 11.77129534373019466580256268126