L(s) = 1 | + (−1.66 + 1.66i)2-s + (0.600 + 1.44i)3-s − 3.53i·4-s + (−3.41 − 1.41i)6-s + (3.30 + 1.37i)7-s + (2.54 + 2.54i)8-s + (0.379 − 0.379i)9-s + (2.29 + 0.950i)11-s + (5.12 − 2.12i)12-s + 1.25·13-s + (−7.78 + 3.22i)14-s − 1.40·16-s + (1.48 − 3.84i)17-s + 1.26i·18-s + (2.56 + 2.56i)19-s + ⋯ |
L(s) = 1 | + (−1.17 + 1.17i)2-s + (0.346 + 0.837i)3-s − 1.76i·4-s + (−1.39 − 0.576i)6-s + (1.25 + 0.518i)7-s + (0.900 + 0.900i)8-s + (0.126 − 0.126i)9-s + (0.691 + 0.286i)11-s + (1.47 − 0.612i)12-s + 0.349·13-s + (−2.08 + 0.861i)14-s − 0.352·16-s + (0.360 − 0.932i)17-s + 0.297i·18-s + (0.589 + 0.589i)19-s + ⋯ |
Λ(s)=(=(425s/2ΓC(s)L(s)(−0.637−0.770i)Λ(2−s)
Λ(s)=(=(425s/2ΓC(s+1/2)L(s)(−0.637−0.770i)Λ(1−s)
Degree: |
2 |
Conductor: |
425
= 52⋅17
|
Sign: |
−0.637−0.770i
|
Analytic conductor: |
3.39364 |
Root analytic conductor: |
1.84218 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ425(274,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 425, ( :1/2), −0.637−0.770i)
|
Particular Values
L(1) |
≈ |
0.441209+0.938001i |
L(21) |
≈ |
0.441209+0.938001i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 17 | 1+(−1.48+3.84i)T |
good | 2 | 1+(1.66−1.66i)T−2iT2 |
| 3 | 1+(−0.600−1.44i)T+(−2.12+2.12i)T2 |
| 7 | 1+(−3.30−1.37i)T+(4.94+4.94i)T2 |
| 11 | 1+(−2.29−0.950i)T+(7.77+7.77i)T2 |
| 13 | 1−1.25T+13T2 |
| 19 | 1+(−2.56−2.56i)T+19iT2 |
| 23 | 1+(3.38−8.16i)T+(−16.2−16.2i)T2 |
| 29 | 1+(3.35+8.09i)T+(−20.5+20.5i)T2 |
| 31 | 1+(−2.25+0.935i)T+(21.9−21.9i)T2 |
| 37 | 1+(1.76+4.25i)T+(−26.1+26.1i)T2 |
| 41 | 1+(1.65−3.99i)T+(−28.9−28.9i)T2 |
| 43 | 1+(5.33+5.33i)T+43iT2 |
| 47 | 1+11.3T+47T2 |
| 53 | 1+(−4.02+4.02i)T−53iT2 |
| 59 | 1+(3.16−3.16i)T−59iT2 |
| 61 | 1+(−0.0929+0.224i)T+(−43.1−43.1i)T2 |
| 67 | 1−7.23iT−67T2 |
| 71 | 1+(1.69−0.703i)T+(50.2−50.2i)T2 |
| 73 | 1+(5.05−2.09i)T+(51.6−51.6i)T2 |
| 79 | 1+(−8.34−3.45i)T+(55.8+55.8i)T2 |
| 83 | 1+(5.17−5.17i)T−83iT2 |
| 89 | 1−2.19iT−89T2 |
| 97 | 1+(−9.07+3.75i)T+(68.5−68.5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.35772640993556340274598720216, −9.891507138929912623505383501345, −9.680330906661907119777561878744, −8.723473117662685832882766442955, −7.970879003766134251272685788736, −7.18072066098933694449730091565, −5.91307984682464701119957823699, −5.03618059646237345819776431720, −3.72093389348558841984428772072, −1.53376318802040265692202563628,
1.18487065680015306737331041911, 1.88584523006573766673731459019, 3.34073138197306968055319683547, 4.70928135031962541908904857361, 6.54096067588431227104592406668, 7.64395174551498752230529619525, 8.290902486929160580536920618983, 8.871714434246994702568851406962, 10.19113486591191993502616134393, 10.77015528606560385727378166195