L(s) = 1 | + (−1.66 + 1.66i)2-s + (0.600 + 1.44i)3-s − 3.53i·4-s + (−3.41 − 1.41i)6-s + (3.30 + 1.37i)7-s + (2.54 + 2.54i)8-s + (0.379 − 0.379i)9-s + (2.29 + 0.950i)11-s + (5.12 − 2.12i)12-s + 1.25·13-s + (−7.78 + 3.22i)14-s − 1.40·16-s + (1.48 − 3.84i)17-s + 1.26i·18-s + (2.56 + 2.56i)19-s + ⋯ |
L(s) = 1 | + (−1.17 + 1.17i)2-s + (0.346 + 0.837i)3-s − 1.76i·4-s + (−1.39 − 0.576i)6-s + (1.25 + 0.518i)7-s + (0.900 + 0.900i)8-s + (0.126 − 0.126i)9-s + (0.691 + 0.286i)11-s + (1.47 − 0.612i)12-s + 0.349·13-s + (−2.08 + 0.861i)14-s − 0.352·16-s + (0.360 − 0.932i)17-s + 0.297i·18-s + (0.589 + 0.589i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 425 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.637 - 0.770i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 425 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.637 - 0.770i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.441209 + 0.938001i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.441209 + 0.938001i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 17 | \( 1 + (-1.48 + 3.84i)T \) |
good | 2 | \( 1 + (1.66 - 1.66i)T - 2iT^{2} \) |
| 3 | \( 1 + (-0.600 - 1.44i)T + (-2.12 + 2.12i)T^{2} \) |
| 7 | \( 1 + (-3.30 - 1.37i)T + (4.94 + 4.94i)T^{2} \) |
| 11 | \( 1 + (-2.29 - 0.950i)T + (7.77 + 7.77i)T^{2} \) |
| 13 | \( 1 - 1.25T + 13T^{2} \) |
| 19 | \( 1 + (-2.56 - 2.56i)T + 19iT^{2} \) |
| 23 | \( 1 + (3.38 - 8.16i)T + (-16.2 - 16.2i)T^{2} \) |
| 29 | \( 1 + (3.35 + 8.09i)T + (-20.5 + 20.5i)T^{2} \) |
| 31 | \( 1 + (-2.25 + 0.935i)T + (21.9 - 21.9i)T^{2} \) |
| 37 | \( 1 + (1.76 + 4.25i)T + (-26.1 + 26.1i)T^{2} \) |
| 41 | \( 1 + (1.65 - 3.99i)T + (-28.9 - 28.9i)T^{2} \) |
| 43 | \( 1 + (5.33 + 5.33i)T + 43iT^{2} \) |
| 47 | \( 1 + 11.3T + 47T^{2} \) |
| 53 | \( 1 + (-4.02 + 4.02i)T - 53iT^{2} \) |
| 59 | \( 1 + (3.16 - 3.16i)T - 59iT^{2} \) |
| 61 | \( 1 + (-0.0929 + 0.224i)T + (-43.1 - 43.1i)T^{2} \) |
| 67 | \( 1 - 7.23iT - 67T^{2} \) |
| 71 | \( 1 + (1.69 - 0.703i)T + (50.2 - 50.2i)T^{2} \) |
| 73 | \( 1 + (5.05 - 2.09i)T + (51.6 - 51.6i)T^{2} \) |
| 79 | \( 1 + (-8.34 - 3.45i)T + (55.8 + 55.8i)T^{2} \) |
| 83 | \( 1 + (5.17 - 5.17i)T - 83iT^{2} \) |
| 89 | \( 1 - 2.19iT - 89T^{2} \) |
| 97 | \( 1 + (-9.07 + 3.75i)T + (68.5 - 68.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.35772640993556340274598720216, −9.891507138929912623505383501345, −9.680330906661907119777561878744, −8.723473117662685832882766442955, −7.970879003766134251272685788736, −7.18072066098933694449730091565, −5.91307984682464701119957823699, −5.03618059646237345819776431720, −3.72093389348558841984428772072, −1.53376318802040265692202563628,
1.18487065680015306737331041911, 1.88584523006573766673731459019, 3.34073138197306968055319683547, 4.70928135031962541908904857361, 6.54096067588431227104592406668, 7.64395174551498752230529619525, 8.290902486929160580536920618983, 8.871714434246994702568851406962, 10.19113486591191993502616134393, 10.77015528606560385727378166195