L(s) = 1 | + (−0.680 + 0.680i)2-s + (−2.44 + 1.01i)3-s + 1.07i·4-s + (0.976 − 2.35i)6-s + (−1.18 + 2.85i)7-s + (−2.09 − 2.09i)8-s + (2.84 − 2.84i)9-s + (−2.34 + 5.66i)11-s + (−1.08 − 2.62i)12-s − 1.16·13-s + (−1.14 − 2.75i)14-s + 0.703·16-s + (3.92 + 1.25i)17-s + 3.86i·18-s + (−3.83 − 3.83i)19-s + ⋯ |
L(s) = 1 | + (−0.481 + 0.481i)2-s + (−1.41 + 0.585i)3-s + 0.536i·4-s + (0.398 − 0.962i)6-s + (−0.447 + 1.08i)7-s + (−0.739 − 0.739i)8-s + (0.946 − 0.946i)9-s + (−0.707 + 1.70i)11-s + (−0.313 − 0.757i)12-s − 0.321·13-s + (−0.304 − 0.735i)14-s + 0.175·16-s + (0.952 + 0.305i)17-s + 0.911i·18-s + (−0.880 − 0.880i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 425 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0642 + 0.997i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 425 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.0642 + 0.997i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.147122 - 0.156896i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.147122 - 0.156896i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 17 | \( 1 + (-3.92 - 1.25i)T \) |
good | 2 | \( 1 + (0.680 - 0.680i)T - 2iT^{2} \) |
| 3 | \( 1 + (2.44 - 1.01i)T + (2.12 - 2.12i)T^{2} \) |
| 7 | \( 1 + (1.18 - 2.85i)T + (-4.94 - 4.94i)T^{2} \) |
| 11 | \( 1 + (2.34 - 5.66i)T + (-7.77 - 7.77i)T^{2} \) |
| 13 | \( 1 + 1.16T + 13T^{2} \) |
| 19 | \( 1 + (3.83 + 3.83i)T + 19iT^{2} \) |
| 23 | \( 1 + (-2.88 - 1.19i)T + (16.2 + 16.2i)T^{2} \) |
| 29 | \( 1 + (-4.61 + 1.91i)T + (20.5 - 20.5i)T^{2} \) |
| 31 | \( 1 + (1.42 + 3.44i)T + (-21.9 + 21.9i)T^{2} \) |
| 37 | \( 1 + (-0.366 + 0.151i)T + (26.1 - 26.1i)T^{2} \) |
| 41 | \( 1 + (-1.57 - 0.651i)T + (28.9 + 28.9i)T^{2} \) |
| 43 | \( 1 + (0.0189 + 0.0189i)T + 43iT^{2} \) |
| 47 | \( 1 + 5.43T + 47T^{2} \) |
| 53 | \( 1 + (0.244 - 0.244i)T - 53iT^{2} \) |
| 59 | \( 1 + (2.87 - 2.87i)T - 59iT^{2} \) |
| 61 | \( 1 + (11.4 + 4.76i)T + (43.1 + 43.1i)T^{2} \) |
| 67 | \( 1 + 5.62iT - 67T^{2} \) |
| 71 | \( 1 + (-4.12 - 9.95i)T + (-50.2 + 50.2i)T^{2} \) |
| 73 | \( 1 + (-0.633 - 1.52i)T + (-51.6 + 51.6i)T^{2} \) |
| 79 | \( 1 + (2.01 - 4.87i)T + (-55.8 - 55.8i)T^{2} \) |
| 83 | \( 1 + (8.78 - 8.78i)T - 83iT^{2} \) |
| 89 | \( 1 - 3.22iT - 89T^{2} \) |
| 97 | \( 1 + (-4.94 - 11.9i)T + (-68.5 + 68.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.99939877892759147752339758852, −10.89221774772859140569886168778, −9.868815866751631410444064673821, −9.379242837756175321149014134582, −8.131968240596411246776415427447, −7.08320788681242119434728439165, −6.25760067549741563842207896831, −5.25812830796020759421894833362, −4.35463659746212890430258218923, −2.66563620111819903492926860126,
0.21552704125838563884136930257, 1.19773990485450099828181312382, 3.16590983395583757878339734615, 4.95184098809944109413718045442, 5.86114036687418125923689874209, 6.49809200447005500504936393279, 7.65095437862172739647605733157, 8.764315342360293389088041365642, 10.17492632503960415117171321929, 10.55465777102475885250652205177