L(s) = 1 | + 1.64i·2-s − 5.37i·3-s + 5.31·4-s + 8.81·6-s − 2.20i·7-s + 21.8i·8-s − 1.88·9-s + 18.7·11-s − 28.5i·12-s + 62.9i·13-s + 3.60·14-s + 6.68·16-s + 17i·17-s − 3.09i·18-s + 47.8·19-s + ⋯ |
L(s) = 1 | + 0.579i·2-s − 1.03i·3-s + 0.663·4-s + 0.599·6-s − 0.118i·7-s + 0.964i·8-s − 0.0698·9-s + 0.514·11-s − 0.686i·12-s + 1.34i·13-s + 0.0689·14-s + 0.104·16-s + 0.242i·17-s − 0.0405i·18-s + 0.577·19-s + ⋯ |
Λ(s)=(=(425s/2ΓC(s)L(s)(0.894−0.447i)Λ(4−s)
Λ(s)=(=(425s/2ΓC(s+3/2)L(s)(0.894−0.447i)Λ(1−s)
Degree: |
2 |
Conductor: |
425
= 52⋅17
|
Sign: |
0.894−0.447i
|
Analytic conductor: |
25.0758 |
Root analytic conductor: |
5.00757 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ425(324,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 425, ( :3/2), 0.894−0.447i)
|
Particular Values
L(2) |
≈ |
2.559547491 |
L(21) |
≈ |
2.559547491 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 17 | 1−17iT |
good | 2 | 1−1.64iT−8T2 |
| 3 | 1+5.37iT−27T2 |
| 7 | 1+2.20iT−343T2 |
| 11 | 1−18.7T+1.33e3T2 |
| 13 | 1−62.9iT−2.19e3T2 |
| 19 | 1−47.8T+6.85e3T2 |
| 23 | 1−153.iT−1.21e4T2 |
| 29 | 1−64.4T+2.43e4T2 |
| 31 | 1+40.9T+2.97e4T2 |
| 37 | 1+32.6iT−5.06e4T2 |
| 41 | 1−159.T+6.89e4T2 |
| 43 | 1+111.iT−7.95e4T2 |
| 47 | 1+614.iT−1.03e5T2 |
| 53 | 1−308.iT−1.48e5T2 |
| 59 | 1+267.T+2.05e5T2 |
| 61 | 1−521.T+2.26e5T2 |
| 67 | 1+118.iT−3.00e5T2 |
| 71 | 1−1.14e3T+3.57e5T2 |
| 73 | 1+40.7iT−3.89e5T2 |
| 79 | 1+374.T+4.93e5T2 |
| 83 | 1−826.iT−5.71e5T2 |
| 89 | 1−38.9T+7.04e5T2 |
| 97 | 1−917.iT−9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.11068090027857833506363755290, −9.831957060178854743437990949131, −8.767976518990893460656588370662, −7.69226416480662668761954316740, −7.05133342759473854331977968521, −6.45728268484996987567925383445, −5.40808572755531706392772493947, −3.87448514002879101247838540678, −2.23294509972993202212436872072, −1.30641850571917803868454402960,
0.956505233259994352199174324282, 2.62800977266097142010115241093, 3.55910511782281963632233152132, 4.64169377381769631497364917854, 5.82553797364197715966600340412, 6.92256857175479013516725102634, 8.014971967377216728859194228964, 9.242437249779718939475982908094, 10.01963762327388303577499394285, 10.64258210614119032539522327220