L(s) = 1 | + 1.64i·2-s − 5.37i·3-s + 5.31·4-s + 8.81·6-s − 2.20i·7-s + 21.8i·8-s − 1.88·9-s + 18.7·11-s − 28.5i·12-s + 62.9i·13-s + 3.60·14-s + 6.68·16-s + 17i·17-s − 3.09i·18-s + 47.8·19-s + ⋯ |
L(s) = 1 | + 0.579i·2-s − 1.03i·3-s + 0.663·4-s + 0.599·6-s − 0.118i·7-s + 0.964i·8-s − 0.0698·9-s + 0.514·11-s − 0.686i·12-s + 1.34i·13-s + 0.0689·14-s + 0.104·16-s + 0.242i·17-s − 0.0405i·18-s + 0.577·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 425 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.894 - 0.447i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 425 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.894 - 0.447i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(2.559547491\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.559547491\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 17 | \( 1 - 17iT \) |
good | 2 | \( 1 - 1.64iT - 8T^{2} \) |
| 3 | \( 1 + 5.37iT - 27T^{2} \) |
| 7 | \( 1 + 2.20iT - 343T^{2} \) |
| 11 | \( 1 - 18.7T + 1.33e3T^{2} \) |
| 13 | \( 1 - 62.9iT - 2.19e3T^{2} \) |
| 19 | \( 1 - 47.8T + 6.85e3T^{2} \) |
| 23 | \( 1 - 153. iT - 1.21e4T^{2} \) |
| 29 | \( 1 - 64.4T + 2.43e4T^{2} \) |
| 31 | \( 1 + 40.9T + 2.97e4T^{2} \) |
| 37 | \( 1 + 32.6iT - 5.06e4T^{2} \) |
| 41 | \( 1 - 159.T + 6.89e4T^{2} \) |
| 43 | \( 1 + 111. iT - 7.95e4T^{2} \) |
| 47 | \( 1 + 614. iT - 1.03e5T^{2} \) |
| 53 | \( 1 - 308. iT - 1.48e5T^{2} \) |
| 59 | \( 1 + 267.T + 2.05e5T^{2} \) |
| 61 | \( 1 - 521.T + 2.26e5T^{2} \) |
| 67 | \( 1 + 118. iT - 3.00e5T^{2} \) |
| 71 | \( 1 - 1.14e3T + 3.57e5T^{2} \) |
| 73 | \( 1 + 40.7iT - 3.89e5T^{2} \) |
| 79 | \( 1 + 374.T + 4.93e5T^{2} \) |
| 83 | \( 1 - 826. iT - 5.71e5T^{2} \) |
| 89 | \( 1 - 38.9T + 7.04e5T^{2} \) |
| 97 | \( 1 - 917. iT - 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.11068090027857833506363755290, −9.831957060178854743437990949131, −8.767976518990893460656588370662, −7.69226416480662668761954316740, −7.05133342759473854331977968521, −6.45728268484996987567925383445, −5.40808572755531706392772493947, −3.87448514002879101247838540678, −2.23294509972993202212436872072, −1.30641850571917803868454402960,
0.956505233259994352199174324282, 2.62800977266097142010115241093, 3.55910511782281963632233152132, 4.64169377381769631497364917854, 5.82553797364197715966600340412, 6.92256857175479013516725102634, 8.014971967377216728859194228964, 9.242437249779718939475982908094, 10.01963762327388303577499394285, 10.64258210614119032539522327220