L(s) = 1 | + 0.801·3-s − 3.55·5-s + 0.142·7-s − 2.35·9-s − 5.09·11-s − 3.44·13-s − 2.84·15-s + 5.28·17-s − 4.97·19-s + 0.113·21-s − 1.58·23-s + 7.62·25-s − 4.29·27-s + 5.53·29-s + 0.382·31-s − 4.08·33-s − 0.504·35-s − 6.21·37-s − 2.76·39-s − 11.4·41-s + 9.71·43-s + 8.37·45-s + 9.64·47-s − 6.97·49-s + 4.23·51-s − 10.7·53-s + 18.1·55-s + ⋯ |
L(s) = 1 | + 0.462·3-s − 1.58·5-s + 0.0536·7-s − 0.786·9-s − 1.53·11-s − 0.955·13-s − 0.734·15-s + 1.28·17-s − 1.14·19-s + 0.0248·21-s − 0.329·23-s + 1.52·25-s − 0.826·27-s + 1.02·29-s + 0.0686·31-s − 0.710·33-s − 0.0852·35-s − 1.02·37-s − 0.442·39-s − 1.78·41-s + 1.48·43-s + 1.24·45-s + 1.40·47-s − 0.997·49-s + 0.593·51-s − 1.47·53-s + 2.44·55-s + ⋯ |
Λ(s)=(=(4304s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(4304s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
0.6330073350 |
L(21) |
≈ |
0.6330073350 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 269 | 1−T |
good | 3 | 1−0.801T+3T2 |
| 5 | 1+3.55T+5T2 |
| 7 | 1−0.142T+7T2 |
| 11 | 1+5.09T+11T2 |
| 13 | 1+3.44T+13T2 |
| 17 | 1−5.28T+17T2 |
| 19 | 1+4.97T+19T2 |
| 23 | 1+1.58T+23T2 |
| 29 | 1−5.53T+29T2 |
| 31 | 1−0.382T+31T2 |
| 37 | 1+6.21T+37T2 |
| 41 | 1+11.4T+41T2 |
| 43 | 1−9.71T+43T2 |
| 47 | 1−9.64T+47T2 |
| 53 | 1+10.7T+53T2 |
| 59 | 1+2.10T+59T2 |
| 61 | 1−8.92T+61T2 |
| 67 | 1+12.4T+67T2 |
| 71 | 1−7.78T+71T2 |
| 73 | 1−8.61T+73T2 |
| 79 | 1−11.8T+79T2 |
| 83 | 1+5.61T+83T2 |
| 89 | 1+12.7T+89T2 |
| 97 | 1−8.41T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.296129842860430483279152844179, −7.72294591809693113764955626836, −7.32367313503145051316664458925, −6.20671182338768656527290791269, −5.20252625967378560915463979993, −4.67723594421279885402725194247, −3.62867725077883429654692709453, −3.03333700248008130018470830300, −2.22762064301727296837879733045, −0.40821075168406269014565020978,
0.40821075168406269014565020978, 2.22762064301727296837879733045, 3.03333700248008130018470830300, 3.62867725077883429654692709453, 4.67723594421279885402725194247, 5.20252625967378560915463979993, 6.20671182338768656527290791269, 7.32367313503145051316664458925, 7.72294591809693113764955626836, 8.296129842860430483279152844179