Properties

Label 2-432-27.4-c1-0-5
Degree $2$
Conductor $432$
Sign $0.0929 - 0.995i$
Analytic cond. $3.44953$
Root an. cond. $1.85729$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1.68 + 0.386i)3-s + (−0.477 + 2.70i)5-s + (−1.82 + 1.52i)7-s + (2.70 + 1.30i)9-s + (0.0434 + 0.246i)11-s + (−2.45 + 0.893i)13-s + (−1.85 + 4.38i)15-s + (0.146 − 0.254i)17-s + (−1.39 − 2.41i)19-s + (−3.66 + 1.87i)21-s + (5.12 + 4.30i)23-s + (−2.40 − 0.876i)25-s + (4.05 + 3.24i)27-s + (0.333 + 0.121i)29-s + (−2.11 − 1.77i)31-s + ⋯
L(s)  = 1  + (0.974 + 0.223i)3-s + (−0.213 + 1.21i)5-s + (−0.688 + 0.577i)7-s + (0.900 + 0.434i)9-s + (0.0130 + 0.0742i)11-s + (−0.680 + 0.247i)13-s + (−0.478 + 1.13i)15-s + (0.0355 − 0.0616i)17-s + (−0.319 − 0.553i)19-s + (−0.799 + 0.409i)21-s + (1.06 + 0.896i)23-s + (−0.481 − 0.175i)25-s + (0.780 + 0.624i)27-s + (0.0619 + 0.0225i)29-s + (−0.380 − 0.319i)31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 432 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0929 - 0.995i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 432 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.0929 - 0.995i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(432\)    =    \(2^{4} \cdot 3^{3}\)
Sign: $0.0929 - 0.995i$
Analytic conductor: \(3.44953\)
Root analytic conductor: \(1.85729\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{432} (193, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 432,\ (\ :1/2),\ 0.0929 - 0.995i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.22632 + 1.11722i\)
\(L(\frac12)\) \(\approx\) \(1.22632 + 1.11722i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + (-1.68 - 0.386i)T \)
good5 \( 1 + (0.477 - 2.70i)T + (-4.69 - 1.71i)T^{2} \)
7 \( 1 + (1.82 - 1.52i)T + (1.21 - 6.89i)T^{2} \)
11 \( 1 + (-0.0434 - 0.246i)T + (-10.3 + 3.76i)T^{2} \)
13 \( 1 + (2.45 - 0.893i)T + (9.95 - 8.35i)T^{2} \)
17 \( 1 + (-0.146 + 0.254i)T + (-8.5 - 14.7i)T^{2} \)
19 \( 1 + (1.39 + 2.41i)T + (-9.5 + 16.4i)T^{2} \)
23 \( 1 + (-5.12 - 4.30i)T + (3.99 + 22.6i)T^{2} \)
29 \( 1 + (-0.333 - 0.121i)T + (22.2 + 18.6i)T^{2} \)
31 \( 1 + (2.11 + 1.77i)T + (5.38 + 30.5i)T^{2} \)
37 \( 1 + (-3.49 + 6.05i)T + (-18.5 - 32.0i)T^{2} \)
41 \( 1 + (-9.13 + 3.32i)T + (31.4 - 26.3i)T^{2} \)
43 \( 1 + (0.0452 + 0.256i)T + (-40.4 + 14.7i)T^{2} \)
47 \( 1 + (-8.75 + 7.34i)T + (8.16 - 46.2i)T^{2} \)
53 \( 1 - 5.43T + 53T^{2} \)
59 \( 1 + (1.03 - 5.88i)T + (-55.4 - 20.1i)T^{2} \)
61 \( 1 + (9.07 - 7.61i)T + (10.5 - 60.0i)T^{2} \)
67 \( 1 + (-1.70 + 0.619i)T + (51.3 - 43.0i)T^{2} \)
71 \( 1 + (0.185 - 0.320i)T + (-35.5 - 61.4i)T^{2} \)
73 \( 1 + (2.51 + 4.35i)T + (-36.5 + 63.2i)T^{2} \)
79 \( 1 + (-0.754 - 0.274i)T + (60.5 + 50.7i)T^{2} \)
83 \( 1 + (2.58 + 0.942i)T + (63.5 + 53.3i)T^{2} \)
89 \( 1 + (5.22 + 9.05i)T + (-44.5 + 77.0i)T^{2} \)
97 \( 1 + (2.57 + 14.6i)T + (-91.1 + 33.1i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.17406607798010684420739968017, −10.40722159017584741809851276720, −9.425603780743466538186358184455, −8.893306387664340801675005182368, −7.42002391976118509002172913703, −7.08952799294694781762300347006, −5.75174837913568860590348321719, −4.24940257157318450393275860838, −3.09926662392709452389310410958, −2.39963629794728371896681502478, 1.00243087488254085998436137029, 2.73154452989583862208565013108, 3.98526776792184608331104546896, 4.88550648127576081200875966015, 6.39720463165659673118012149804, 7.44501286534387694714165424462, 8.257116202118847933765838298788, 9.092040089108280056904929976139, 9.782498745966529680518753397830, 10.77807588623130710722815587883

Graph of the $Z$-function along the critical line