L(s) = 1 | + (1.68 + 0.386i)3-s + (−0.477 + 2.70i)5-s + (−1.82 + 1.52i)7-s + (2.70 + 1.30i)9-s + (0.0434 + 0.246i)11-s + (−2.45 + 0.893i)13-s + (−1.85 + 4.38i)15-s + (0.146 − 0.254i)17-s + (−1.39 − 2.41i)19-s + (−3.66 + 1.87i)21-s + (5.12 + 4.30i)23-s + (−2.40 − 0.876i)25-s + (4.05 + 3.24i)27-s + (0.333 + 0.121i)29-s + (−2.11 − 1.77i)31-s + ⋯ |
L(s) = 1 | + (0.974 + 0.223i)3-s + (−0.213 + 1.21i)5-s + (−0.688 + 0.577i)7-s + (0.900 + 0.434i)9-s + (0.0130 + 0.0742i)11-s + (−0.680 + 0.247i)13-s + (−0.478 + 1.13i)15-s + (0.0355 − 0.0616i)17-s + (−0.319 − 0.553i)19-s + (−0.799 + 0.409i)21-s + (1.06 + 0.896i)23-s + (−0.481 − 0.175i)25-s + (0.780 + 0.624i)27-s + (0.0619 + 0.0225i)29-s + (−0.380 − 0.319i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 432 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0929 - 0.995i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 432 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.0929 - 0.995i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.22632 + 1.11722i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.22632 + 1.11722i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-1.68 - 0.386i)T \) |
good | 5 | \( 1 + (0.477 - 2.70i)T + (-4.69 - 1.71i)T^{2} \) |
| 7 | \( 1 + (1.82 - 1.52i)T + (1.21 - 6.89i)T^{2} \) |
| 11 | \( 1 + (-0.0434 - 0.246i)T + (-10.3 + 3.76i)T^{2} \) |
| 13 | \( 1 + (2.45 - 0.893i)T + (9.95 - 8.35i)T^{2} \) |
| 17 | \( 1 + (-0.146 + 0.254i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (1.39 + 2.41i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-5.12 - 4.30i)T + (3.99 + 22.6i)T^{2} \) |
| 29 | \( 1 + (-0.333 - 0.121i)T + (22.2 + 18.6i)T^{2} \) |
| 31 | \( 1 + (2.11 + 1.77i)T + (5.38 + 30.5i)T^{2} \) |
| 37 | \( 1 + (-3.49 + 6.05i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (-9.13 + 3.32i)T + (31.4 - 26.3i)T^{2} \) |
| 43 | \( 1 + (0.0452 + 0.256i)T + (-40.4 + 14.7i)T^{2} \) |
| 47 | \( 1 + (-8.75 + 7.34i)T + (8.16 - 46.2i)T^{2} \) |
| 53 | \( 1 - 5.43T + 53T^{2} \) |
| 59 | \( 1 + (1.03 - 5.88i)T + (-55.4 - 20.1i)T^{2} \) |
| 61 | \( 1 + (9.07 - 7.61i)T + (10.5 - 60.0i)T^{2} \) |
| 67 | \( 1 + (-1.70 + 0.619i)T + (51.3 - 43.0i)T^{2} \) |
| 71 | \( 1 + (0.185 - 0.320i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + (2.51 + 4.35i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-0.754 - 0.274i)T + (60.5 + 50.7i)T^{2} \) |
| 83 | \( 1 + (2.58 + 0.942i)T + (63.5 + 53.3i)T^{2} \) |
| 89 | \( 1 + (5.22 + 9.05i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (2.57 + 14.6i)T + (-91.1 + 33.1i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.17406607798010684420739968017, −10.40722159017584741809851276720, −9.425603780743466538186358184455, −8.893306387664340801675005182368, −7.42002391976118509002172913703, −7.08952799294694781762300347006, −5.75174837913568860590348321719, −4.24940257157318450393275860838, −3.09926662392709452389310410958, −2.39963629794728371896681502478,
1.00243087488254085998436137029, 2.73154452989583862208565013108, 3.98526776792184608331104546896, 4.88550648127576081200875966015, 6.39720463165659673118012149804, 7.44501286534387694714165424462, 8.257116202118847933765838298788, 9.092040089108280056904929976139, 9.782498745966529680518753397830, 10.77807588623130710722815587883