Properties

Label 2-45-5.4-c13-0-4
Degree $2$
Conductor $45$
Sign $i$
Analytic cond. $48.2539$
Root an. cond. $6.94650$
Motivic weight $13$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 118. i·2-s − 5.85e3·4-s + 3.49e4i·5-s + 2.77e5i·8-s − 4.14e6·10-s − 8.07e7·16-s + 1.83e8i·17-s + 3.53e7·19-s − 2.04e8i·20-s − 1.29e8i·23-s − 1.22e9·25-s − 8.28e9·31-s − 7.30e9i·32-s − 2.17e10·34-s + 4.19e9i·38-s + ⋯
L(s)  = 1  + 1.30i·2-s − 0.714·4-s + 0.999i·5-s + 0.373i·8-s − 1.30·10-s − 1.20·16-s + 1.84i·17-s + 0.172·19-s − 0.714i·20-s − 0.182i·23-s − 0.999·25-s − 1.67·31-s − 1.20i·32-s − 2.40·34-s + 0.225i·38-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 45 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & i\, \overline{\Lambda}(14-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 45 ^{s/2} \, \Gamma_{\C}(s+13/2) \, L(s)\cr =\mathstrut & i\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(45\)    =    \(3^{2} \cdot 5\)
Sign: $i$
Analytic conductor: \(48.2539\)
Root analytic conductor: \(6.94650\)
Motivic weight: \(13\)
Rational: no
Arithmetic: yes
Character: $\chi_{45} (19, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 45,\ (\ :13/2),\ i)\)

Particular Values

\(L(7)\) \(\approx\) \(1.042471703\)
\(L(\frac12)\) \(\approx\) \(1.042471703\)
\(L(\frac{15}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 - 3.49e4iT \)
good2 \( 1 - 118. iT - 8.19e3T^{2} \)
7 \( 1 - 9.68e10T^{2} \)
11 \( 1 + 3.45e13T^{2} \)
13 \( 1 - 3.02e14T^{2} \)
17 \( 1 - 1.83e8iT - 9.90e15T^{2} \)
19 \( 1 - 3.53e7T + 4.20e16T^{2} \)
23 \( 1 + 1.29e8iT - 5.04e17T^{2} \)
29 \( 1 + 1.02e19T^{2} \)
31 \( 1 + 8.28e9T + 2.44e19T^{2} \)
37 \( 1 - 2.43e20T^{2} \)
41 \( 1 + 9.25e20T^{2} \)
43 \( 1 - 1.71e21T^{2} \)
47 \( 1 + 2.73e10iT - 5.46e21T^{2} \)
53 \( 1 + 2.56e11iT - 2.60e22T^{2} \)
59 \( 1 + 1.04e23T^{2} \)
61 \( 1 - 8.00e11T + 1.61e23T^{2} \)
67 \( 1 - 5.48e23T^{2} \)
71 \( 1 + 1.16e24T^{2} \)
73 \( 1 - 1.67e24T^{2} \)
79 \( 1 + 3.94e12T + 4.66e24T^{2} \)
83 \( 1 + 4.72e12iT - 8.87e24T^{2} \)
89 \( 1 + 2.19e25T^{2} \)
97 \( 1 - 6.73e25T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.41464381791894689139629181909, −13.04432622927379629281613699531, −11.39298891988600496482615306685, −10.29662524680622907463345713528, −8.650832246927276787837221334047, −7.52392521483161377855136521549, −6.53358358164771606295739295399, −5.55634701639146730000838627436, −3.77967192565804348670268384470, −2.06847112521517763565442339962, 0.27814166767114872991654230387, 1.31522854816042370574673025240, 2.63271769106929173238347451132, 4.04548652805962883467135612711, 5.31960770612100537467410957328, 7.27228843444565698245690701711, 8.968856242876960147835276474051, 9.763783047402253697368486827026, 11.16267326194968680767251463718, 12.03275485218143254812009839263

Graph of the $Z$-function along the critical line