L(s) = 1 | − 0.618i·2-s + (1.61 + 0.618i)3-s + 1.61·4-s + 0.381·5-s + (0.381 − 1.00i)6-s + (0.381 − 2.61i)7-s − 2.23i·8-s + (2.23 + 2.00i)9-s − 0.236i·10-s + 2.23i·11-s + (2.61 + 1.00i)12-s − 0.145i·13-s + (−1.61 − 0.236i)14-s + (0.618 + 0.236i)15-s + 1.85·16-s − 7.47·17-s + ⋯ |
L(s) = 1 | − 0.437i·2-s + (0.934 + 0.356i)3-s + 0.809·4-s + 0.170·5-s + (0.155 − 0.408i)6-s + (0.144 − 0.989i)7-s − 0.790i·8-s + (0.745 + 0.666i)9-s − 0.0746i·10-s + 0.674i·11-s + (0.755 + 0.288i)12-s − 0.0404i·13-s + (−0.432 − 0.0630i)14-s + (0.159 + 0.0609i)15-s + 0.463·16-s − 1.81·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 483 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.872 + 0.487i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 483 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.872 + 0.487i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.27330 - 0.592277i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.27330 - 0.592277i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-1.61 - 0.618i)T \) |
| 7 | \( 1 + (-0.381 + 2.61i)T \) |
| 23 | \( 1 + iT \) |
good | 2 | \( 1 + 0.618iT - 2T^{2} \) |
| 5 | \( 1 - 0.381T + 5T^{2} \) |
| 11 | \( 1 - 2.23iT - 11T^{2} \) |
| 13 | \( 1 + 0.145iT - 13T^{2} \) |
| 17 | \( 1 + 7.47T + 17T^{2} \) |
| 19 | \( 1 + 3.47iT - 19T^{2} \) |
| 29 | \( 1 - 6.23iT - 29T^{2} \) |
| 31 | \( 1 - 9.47iT - 31T^{2} \) |
| 37 | \( 1 - 10.2T + 37T^{2} \) |
| 41 | \( 1 + 4.23T + 41T^{2} \) |
| 43 | \( 1 - 5.38T + 43T^{2} \) |
| 47 | \( 1 + 8T + 47T^{2} \) |
| 53 | \( 1 + 6.56iT - 53T^{2} \) |
| 59 | \( 1 - 12.5T + 59T^{2} \) |
| 61 | \( 1 + 5.85iT - 61T^{2} \) |
| 67 | \( 1 + 8.38T + 67T^{2} \) |
| 71 | \( 1 - 10.3iT - 71T^{2} \) |
| 73 | \( 1 + 3.76iT - 73T^{2} \) |
| 79 | \( 1 + 12.2T + 79T^{2} \) |
| 83 | \( 1 - 2.70T + 83T^{2} \) |
| 89 | \( 1 + 3.09T + 89T^{2} \) |
| 97 | \( 1 - 15.9iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.80188246600214473316104821375, −10.13346020206698756148084100232, −9.298762806981352456913337530007, −8.248363481438303950267186450646, −7.14608232646074804621520514852, −6.70668093817699346898275281593, −4.82728574092827190671717886850, −3.92329811350257781320650975924, −2.73608755653770352116939033284, −1.67831645586395942662184152274,
1.98694529128153579213550212957, 2.68950323975525126104993337524, 4.17944931062128854471464480788, 5.88171342667040902915940334340, 6.32140639643068285653828306227, 7.58738636717348328995607258045, 8.219448215687862113054384715782, 9.045765223719250670382880151825, 9.961724949190421894828103529032, 11.34453549184167251032091221501