L(s) = 1 | + (−0.957 + 1.34i)2-s + (−0.235 + 0.971i)3-s + (−0.236 − 0.684i)4-s + (0.115 − 2.42i)5-s + (−1.08 − 1.24i)6-s + (2.21 − 1.43i)7-s + (−2.02 − 0.593i)8-s + (−0.888 − 0.458i)9-s + (3.15 + 2.47i)10-s + (−0.243 − 0.341i)11-s + (0.720 − 0.0688i)12-s + (−0.871 + 6.05i)13-s + (−0.189 + 4.36i)14-s + (2.33 + 0.684i)15-s + (3.87 − 3.04i)16-s + (5.69 − 1.09i)17-s + ⋯ |
L(s) = 1 | + (−0.676 + 0.950i)2-s + (−0.136 + 0.561i)3-s + (−0.118 − 0.342i)4-s + (0.0516 − 1.08i)5-s + (−0.441 − 0.509i)6-s + (0.838 − 0.544i)7-s + (−0.714 − 0.209i)8-s + (−0.296 − 0.152i)9-s + (0.996 + 0.783i)10-s + (−0.0734 − 0.103i)11-s + (0.208 − 0.0198i)12-s + (−0.241 + 1.68i)13-s + (−0.0505 + 1.16i)14-s + (0.601 + 0.176i)15-s + (0.967 − 0.760i)16-s + (1.38 − 0.266i)17-s + ⋯ |
Λ(s)=(=(483s/2ΓC(s)L(s)(0.109−0.994i)Λ(2−s)
Λ(s)=(=(483s/2ΓC(s+1/2)L(s)(0.109−0.994i)Λ(1−s)
Degree: |
2 |
Conductor: |
483
= 3⋅7⋅23
|
Sign: |
0.109−0.994i
|
Analytic conductor: |
3.85677 |
Root analytic conductor: |
1.96386 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ483(4,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 483, ( :1/2), 0.109−0.994i)
|
Particular Values
L(1) |
≈ |
0.781401+0.700147i |
L(21) |
≈ |
0.781401+0.700147i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(0.235−0.971i)T |
| 7 | 1+(−2.21+1.43i)T |
| 23 | 1+(−3.96−2.69i)T |
good | 2 | 1+(0.957−1.34i)T+(−0.654−1.89i)T2 |
| 5 | 1+(−0.115+2.42i)T+(−4.97−0.475i)T2 |
| 11 | 1+(0.243+0.341i)T+(−3.59+10.3i)T2 |
| 13 | 1+(0.871−6.05i)T+(−12.4−3.66i)T2 |
| 17 | 1+(−5.69+1.09i)T+(15.7−6.31i)T2 |
| 19 | 1+(−4.77−0.921i)T+(17.6+7.06i)T2 |
| 29 | 1+(0.408+0.471i)T+(−4.12+28.7i)T2 |
| 31 | 1+(5.22−4.98i)T+(1.47−30.9i)T2 |
| 37 | 1+(−6.81−3.51i)T+(21.4+30.1i)T2 |
| 41 | 1+(−3.15−2.02i)T+(17.0+37.2i)T2 |
| 43 | 1+(0.780−0.229i)T+(36.1−23.2i)T2 |
| 47 | 1+(4.23+7.33i)T+(−23.5+40.7i)T2 |
| 53 | 1+(3.64+1.45i)T+(38.3+36.5i)T2 |
| 59 | 1+(2.86+2.25i)T+(13.9+57.3i)T2 |
| 61 | 1+(2.90+11.9i)T+(−54.2+27.9i)T2 |
| 67 | 1+(−11.4−1.09i)T+(65.7+12.6i)T2 |
| 71 | 1+(−5.27−11.5i)T+(−46.4+53.6i)T2 |
| 73 | 1+(1.53+4.42i)T+(−57.3+45.1i)T2 |
| 79 | 1+(−0.449+0.179i)T+(57.1−54.5i)T2 |
| 83 | 1+(7.46−4.79i)T+(34.4−75.4i)T2 |
| 89 | 1+(2.05+1.96i)T+(4.23+88.8i)T2 |
| 97 | 1+(5.73+3.68i)T+(40.2+88.2i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.27184604331916961326997286925, −9.779448086166188005710658833703, −9.352073465137809024552653018378, −8.461314108104272531335771813883, −7.67444823596726341146995081464, −6.82837052165995885677193917467, −5.45041843230342653961243985808, −4.82203192598509763276371127912, −3.52241455784931394760487013144, −1.21891776612918093923685589536,
1.05768444198315758994839658686, 2.52665922973584617605716023692, 3.17587055800583406042292143618, 5.33616677747538597923861189608, 6.00126973848646170883363623904, 7.48608438646589085991477968520, 7.979389492839746696241565156835, 9.201516145300641696362650749560, 10.12088109119227222338671196145, 10.87140736258822298273548196716