L(s) = 1 | + 3.66·2-s − 1.73·3-s + 9.42·4-s + 6.75i·5-s − 6.34·6-s + 2.64i·7-s + 19.8·8-s + 2.99·9-s + 24.7i·10-s + 15.9i·11-s − 16.3·12-s − 22.9·13-s + 9.69i·14-s − 11.7i·15-s + 35.1·16-s − 7.83i·17-s + ⋯ |
L(s) = 1 | + 1.83·2-s − 0.577·3-s + 2.35·4-s + 1.35i·5-s − 1.05·6-s + 0.377i·7-s + 2.48·8-s + 0.333·9-s + 2.47i·10-s + 1.44i·11-s − 1.36·12-s − 1.76·13-s + 0.692i·14-s − 0.780i·15-s + 2.19·16-s − 0.460i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 483 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.248 - 0.968i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 483 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.248 - 0.968i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(4.174748208\) |
\(L(\frac12)\) |
\(\approx\) |
\(4.174748208\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + 1.73T \) |
| 7 | \( 1 - 2.64iT \) |
| 23 | \( 1 + (-22.2 - 5.71i)T \) |
good | 2 | \( 1 - 3.66T + 4T^{2} \) |
| 5 | \( 1 - 6.75iT - 25T^{2} \) |
| 11 | \( 1 - 15.9iT - 121T^{2} \) |
| 13 | \( 1 + 22.9T + 169T^{2} \) |
| 17 | \( 1 + 7.83iT - 289T^{2} \) |
| 19 | \( 1 + 21.4iT - 361T^{2} \) |
| 29 | \( 1 - 42.1T + 841T^{2} \) |
| 31 | \( 1 - 34.5T + 961T^{2} \) |
| 37 | \( 1 + 17.1iT - 1.36e3T^{2} \) |
| 41 | \( 1 - 43.6T + 1.68e3T^{2} \) |
| 43 | \( 1 - 55.0iT - 1.84e3T^{2} \) |
| 47 | \( 1 - 16.2T + 2.20e3T^{2} \) |
| 53 | \( 1 + 101. iT - 2.80e3T^{2} \) |
| 59 | \( 1 - 12.8T + 3.48e3T^{2} \) |
| 61 | \( 1 - 69.6iT - 3.72e3T^{2} \) |
| 67 | \( 1 + 62.4iT - 4.48e3T^{2} \) |
| 71 | \( 1 + 130.T + 5.04e3T^{2} \) |
| 73 | \( 1 - 42.3T + 5.32e3T^{2} \) |
| 79 | \( 1 + 124. iT - 6.24e3T^{2} \) |
| 83 | \( 1 + 54.3iT - 6.88e3T^{2} \) |
| 89 | \( 1 - 132. iT - 7.92e3T^{2} \) |
| 97 | \( 1 + 5.45iT - 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.33461745149646138847098369060, −10.42619533639456110474828441858, −9.638732388413832699164344818859, −7.36693662588303328798967393947, −7.04395562877055055754009167558, −6.26271075137995792683650541847, −4.93982277347208965016542539552, −4.60357181107059152051493342280, −2.90320280718607406562260139122, −2.39308383117645094229760100601,
1.02912754899379939834336350032, 2.77592253724694622941022887362, 4.12952482926129683706859006460, 4.84903456635322354819386912882, 5.56250636430819810760340953542, 6.40402409292909929290033982862, 7.54268492575961098489860032435, 8.622332953158680036424002678194, 10.07425944234203471360032808841, 10.93151155748340500150881198079