L(s) = 1 | + (1.69 + 1.69i)2-s − 1.73·3-s + 3.73i·4-s + (1.23 + 1.23i)5-s + (−2.93 − 2.93i)6-s + (−2.93 + 2.93i)8-s + 2.99·9-s + 4.19i·10-s + (−4.62 + 4.62i)11-s − 6.46i·12-s + (−2.14 − 2.14i)15-s − 2.46·16-s + (5.07 + 5.07i)18-s + (−4.62 + 4.62i)20-s − 15.6·22-s + ⋯ |
L(s) = 1 | + (1.19 + 1.19i)2-s − 1.00·3-s + 1.86i·4-s + (0.554 + 0.554i)5-s + (−1.19 − 1.19i)6-s + (−1.03 + 1.03i)8-s + 0.999·9-s + 1.32i·10-s + (−1.39 + 1.39i)11-s − 1.86i·12-s + (−0.554 − 0.554i)15-s − 0.616·16-s + (1.19 + 1.19i)18-s + (−1.03 + 1.03i)20-s − 3.33·22-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 507 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.957 - 0.289i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 507 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.957 - 0.289i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.278942 + 1.88387i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.278942 + 1.88387i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + 1.73T \) |
| 13 | \( 1 \) |
good | 2 | \( 1 + (-1.69 - 1.69i)T + 2iT^{2} \) |
| 5 | \( 1 + (-1.23 - 1.23i)T + 5iT^{2} \) |
| 7 | \( 1 + 7iT^{2} \) |
| 11 | \( 1 + (4.62 - 4.62i)T - 11iT^{2} \) |
| 17 | \( 1 + 17T^{2} \) |
| 19 | \( 1 - 19iT^{2} \) |
| 23 | \( 1 + 23T^{2} \) |
| 29 | \( 1 - 29T^{2} \) |
| 31 | \( 1 - 31iT^{2} \) |
| 37 | \( 1 + 37iT^{2} \) |
| 41 | \( 1 + (-5.53 - 5.53i)T + 41iT^{2} \) |
| 43 | \( 1 - 4iT - 43T^{2} \) |
| 47 | \( 1 + (-7.10 + 7.10i)T - 47iT^{2} \) |
| 53 | \( 1 - 53T^{2} \) |
| 59 | \( 1 + (-0.332 + 0.332i)T - 59iT^{2} \) |
| 61 | \( 1 - 13.8T + 61T^{2} \) |
| 67 | \( 1 - 67iT^{2} \) |
| 71 | \( 1 + (-11.3 - 11.3i)T + 71iT^{2} \) |
| 73 | \( 1 + 73iT^{2} \) |
| 79 | \( 1 + 10.3T + 79T^{2} \) |
| 83 | \( 1 + (-8.91 - 8.91i)T + 83iT^{2} \) |
| 89 | \( 1 + (-3.05 + 3.05i)T - 89iT^{2} \) |
| 97 | \( 1 - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.52937675932357181348205729471, −10.38994019678840381987569135138, −9.842969862528991093813045696606, −8.076241568783003249219061384957, −7.19960942562484064073154074333, −6.63017136723267024605730952332, −5.64167144969663204694464170131, −5.03069338811214912309796883350, −4.10684717872662527560332285157, −2.44387846737510216682798653360,
0.895613408524568201116100160247, 2.38214065357645810577182725926, 3.68145883692429373569907853483, 4.89524815111895920250920752605, 5.51470551455422474227637398169, 6.10944078666756845558280651270, 7.69921652065999922176079735262, 9.094820010645401307561129777415, 10.19236306257401698967495771334, 10.81019105266373859182213525130