L(s) = 1 | + (−0.481 + 1.66i)3-s + (−0.160 + 1.99i)4-s + (−3.64 − 1.46i)7-s + (−2.53 − 1.60i)9-s + (−3.23 − 1.22i)12-s + (−2.59 − 2.5i)13-s + (−3.94 − 0.641i)16-s + (5.49 + 1.47i)19-s + (4.19 − 5.35i)21-s + (−3.31 + 3.74i)25-s + (3.88 − 3.44i)27-s + (3.51 − 7.03i)28-s + (0.438 − 7.24i)31-s + (3.60 − 4.79i)36-s + (−6.69 + 10.1i)37-s + ⋯ |
L(s) = 1 | + (−0.278 + 0.960i)3-s + (−0.0804 + 0.996i)4-s + (−1.37 − 0.554i)7-s + (−0.845 − 0.534i)9-s + (−0.935 − 0.354i)12-s + (−0.720 − 0.693i)13-s + (−0.987 − 0.160i)16-s + (1.26 + 0.337i)19-s + (0.915 − 1.16i)21-s + (−0.663 + 0.748i)25-s + (0.748 − 0.663i)27-s + (0.663 − 1.32i)28-s + (0.0786 − 1.30i)31-s + (0.600 − 0.799i)36-s + (−1.10 + 1.66i)37-s + ⋯ |
Λ(s)=(=(507s/2ΓC(s)L(s)(−0.652+0.757i)Λ(2−s)
Λ(s)=(=(507s/2ΓC(s+1/2)L(s)(−0.652+0.757i)Λ(1−s)
Degree: |
2 |
Conductor: |
507
= 3⋅132
|
Sign: |
−0.652+0.757i
|
Analytic conductor: |
4.04841 |
Root analytic conductor: |
2.01206 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ507(227,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 507, ( :1/2), −0.652+0.757i)
|
Particular Values
L(1) |
≈ |
0.0698747−0.152459i |
L(21) |
≈ |
0.0698747−0.152459i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(0.481−1.66i)T |
| 13 | 1+(2.59+2.5i)T |
good | 2 | 1+(0.160−1.99i)T2 |
| 5 | 1+(3.31−3.74i)T2 |
| 7 | 1+(3.64+1.46i)T+(5.04+4.84i)T2 |
| 11 | 1+(−9.93−4.71i)T2 |
| 17 | 1+(11.7−12.2i)T2 |
| 19 | 1+(−5.49−1.47i)T+(16.4+9.5i)T2 |
| 23 | 1+(−11.5−19.9i)T2 |
| 29 | 1+(28.9+2.33i)T2 |
| 31 | 1+(−0.438+7.24i)T+(−30.7−3.73i)T2 |
| 37 | 1+(6.69−10.1i)T+(−14.5−34.0i)T2 |
| 41 | 1+(21.9−34.6i)T2 |
| 43 | 1+(12.4+2.53i)T+(39.5+16.8i)T2 |
| 47 | 1+(43.9+16.6i)T2 |
| 53 | 1+(51.4+12.6i)T2 |
| 59 | 1+(−18.6−55.9i)T2 |
| 61 | 1+(12.4−9.38i)T+(16.9−58.5i)T2 |
| 67 | 1+(6.63−7.80i)T+(−10.7−66.1i)T2 |
| 71 | 1+(−70.9−2.85i)T2 |
| 73 | 1+(1.60+5.15i)T+(−60.0+41.4i)T2 |
| 79 | 1+(8.45+12.2i)T+(−28.0+73.8i)T2 |
| 83 | 1+(−38.5+73.4i)T2 |
| 89 | 1+(−77.0+44.5i)T2 |
| 97 | 1+(−1.70−16.9i)T+(−95.0+19.4i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.65163634753640032956255229513, −10.29680262719255646570341832920, −9.835000635003275579012786671995, −9.016474076465623049154031638502, −7.85668273828177456663919338978, −6.99589469644383244489053920336, −5.85977898410385106289546796707, −4.71098762333120817415232483426, −3.52632418158682961006849401652, −3.06778052177355812319489869608,
0.097337389466126812515423586290, 1.83616184795605944486403103495, 3.08767748715571094108039965021, 4.94322852684127128953648988569, 5.82474195603312589455397281499, 6.61245367402334725176013945411, 7.27568816860675624004811438676, 8.726620807134414795493618051986, 9.509714092026067525382359702299, 10.23432719980748448688014846121