L(s) = 1 | + (−0.481 + 1.66i)3-s + (−0.160 + 1.99i)4-s + (−3.64 − 1.46i)7-s + (−2.53 − 1.60i)9-s + (−3.23 − 1.22i)12-s + (−2.59 − 2.5i)13-s + (−3.94 − 0.641i)16-s + (5.49 + 1.47i)19-s + (4.19 − 5.35i)21-s + (−3.31 + 3.74i)25-s + (3.88 − 3.44i)27-s + (3.51 − 7.03i)28-s + (0.438 − 7.24i)31-s + (3.60 − 4.79i)36-s + (−6.69 + 10.1i)37-s + ⋯ |
L(s) = 1 | + (−0.278 + 0.960i)3-s + (−0.0804 + 0.996i)4-s + (−1.37 − 0.554i)7-s + (−0.845 − 0.534i)9-s + (−0.935 − 0.354i)12-s + (−0.720 − 0.693i)13-s + (−0.987 − 0.160i)16-s + (1.26 + 0.337i)19-s + (0.915 − 1.16i)21-s + (−0.663 + 0.748i)25-s + (0.748 − 0.663i)27-s + (0.663 − 1.32i)28-s + (0.0786 − 1.30i)31-s + (0.600 − 0.799i)36-s + (−1.10 + 1.66i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 507 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.652 + 0.757i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 507 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.652 + 0.757i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0698747 - 0.152459i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0698747 - 0.152459i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (0.481 - 1.66i)T \) |
| 13 | \( 1 + (2.59 + 2.5i)T \) |
good | 2 | \( 1 + (0.160 - 1.99i)T^{2} \) |
| 5 | \( 1 + (3.31 - 3.74i)T^{2} \) |
| 7 | \( 1 + (3.64 + 1.46i)T + (5.04 + 4.84i)T^{2} \) |
| 11 | \( 1 + (-9.93 - 4.71i)T^{2} \) |
| 17 | \( 1 + (11.7 - 12.2i)T^{2} \) |
| 19 | \( 1 + (-5.49 - 1.47i)T + (16.4 + 9.5i)T^{2} \) |
| 23 | \( 1 + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (28.9 + 2.33i)T^{2} \) |
| 31 | \( 1 + (-0.438 + 7.24i)T + (-30.7 - 3.73i)T^{2} \) |
| 37 | \( 1 + (6.69 - 10.1i)T + (-14.5 - 34.0i)T^{2} \) |
| 41 | \( 1 + (21.9 - 34.6i)T^{2} \) |
| 43 | \( 1 + (12.4 + 2.53i)T + (39.5 + 16.8i)T^{2} \) |
| 47 | \( 1 + (43.9 + 16.6i)T^{2} \) |
| 53 | \( 1 + (51.4 + 12.6i)T^{2} \) |
| 59 | \( 1 + (-18.6 - 55.9i)T^{2} \) |
| 61 | \( 1 + (12.4 - 9.38i)T + (16.9 - 58.5i)T^{2} \) |
| 67 | \( 1 + (6.63 - 7.80i)T + (-10.7 - 66.1i)T^{2} \) |
| 71 | \( 1 + (-70.9 - 2.85i)T^{2} \) |
| 73 | \( 1 + (1.60 + 5.15i)T + (-60.0 + 41.4i)T^{2} \) |
| 79 | \( 1 + (8.45 + 12.2i)T + (-28.0 + 73.8i)T^{2} \) |
| 83 | \( 1 + (-38.5 + 73.4i)T^{2} \) |
| 89 | \( 1 + (-77.0 + 44.5i)T^{2} \) |
| 97 | \( 1 + (-1.70 - 16.9i)T + (-95.0 + 19.4i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.65163634753640032956255229513, −10.29680262719255646570341832920, −9.835000635003275579012786671995, −9.016474076465623049154031638502, −7.85668273828177456663919338978, −6.99589469644383244489053920336, −5.85977898410385106289546796707, −4.71098762333120817415232483426, −3.52632418158682961006849401652, −3.06778052177355812319489869608,
0.097337389466126812515423586290, 1.83616184795605944486403103495, 3.08767748715571094108039965021, 4.94322852684127128953648988569, 5.82474195603312589455397281499, 6.61245367402334725176013945411, 7.27568816860675624004811438676, 8.726620807134414795493618051986, 9.509714092026067525382359702299, 10.23432719980748448688014846121