Properties

Label 2-538-1.1-c7-0-123
Degree $2$
Conductor $538$
Sign $-1$
Analytic cond. $168.063$
Root an. cond. $12.9639$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 8·2-s − 19.0·3-s + 64·4-s + 319.·5-s − 152.·6-s − 1.29e3·7-s + 512·8-s − 1.82e3·9-s + 2.55e3·10-s + 5.36e3·11-s − 1.21e3·12-s + 1.88e3·13-s − 1.03e4·14-s − 6.08e3·15-s + 4.09e3·16-s − 1.78e3·17-s − 1.45e4·18-s − 3.24e4·19-s + 2.04e4·20-s + 2.46e4·21-s + 4.28e4·22-s + 4.57e4·23-s − 9.75e3·24-s + 2.37e4·25-s + 1.50e4·26-s + 7.64e4·27-s − 8.26e4·28-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.407·3-s + 0.5·4-s + 1.14·5-s − 0.288·6-s − 1.42·7-s + 0.353·8-s − 0.833·9-s + 0.807·10-s + 1.21·11-s − 0.203·12-s + 0.237·13-s − 1.00·14-s − 0.465·15-s + 0.250·16-s − 0.0883·17-s − 0.589·18-s − 1.08·19-s + 0.570·20-s + 0.579·21-s + 0.858·22-s + 0.784·23-s − 0.144·24-s + 0.303·25-s + 0.167·26-s + 0.747·27-s − 0.711·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 538 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 538 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(538\)    =    \(2 \cdot 269\)
Sign: $-1$
Analytic conductor: \(168.063\)
Root analytic conductor: \(12.9639\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 538,\ (\ :7/2),\ -1)\)

Particular Values

\(L(4)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - 8T \)
269 \( 1 + 1.94e7T \)
good3 \( 1 + 19.0T + 2.18e3T^{2} \)
5 \( 1 - 319.T + 7.81e4T^{2} \)
7 \( 1 + 1.29e3T + 8.23e5T^{2} \)
11 \( 1 - 5.36e3T + 1.94e7T^{2} \)
13 \( 1 - 1.88e3T + 6.27e7T^{2} \)
17 \( 1 + 1.78e3T + 4.10e8T^{2} \)
19 \( 1 + 3.24e4T + 8.93e8T^{2} \)
23 \( 1 - 4.57e4T + 3.40e9T^{2} \)
29 \( 1 + 6.01e3T + 1.72e10T^{2} \)
31 \( 1 - 1.32e5T + 2.75e10T^{2} \)
37 \( 1 - 1.10e5T + 9.49e10T^{2} \)
41 \( 1 - 1.04e5T + 1.94e11T^{2} \)
43 \( 1 + 2.93e5T + 2.71e11T^{2} \)
47 \( 1 + 8.29e5T + 5.06e11T^{2} \)
53 \( 1 + 1.35e6T + 1.17e12T^{2} \)
59 \( 1 + 5.41e5T + 2.48e12T^{2} \)
61 \( 1 - 1.64e5T + 3.14e12T^{2} \)
67 \( 1 - 3.90e6T + 6.06e12T^{2} \)
71 \( 1 + 5.41e6T + 9.09e12T^{2} \)
73 \( 1 + 4.90e6T + 1.10e13T^{2} \)
79 \( 1 + 6.31e6T + 1.92e13T^{2} \)
83 \( 1 - 2.42e6T + 2.71e13T^{2} \)
89 \( 1 + 1.16e6T + 4.42e13T^{2} \)
97 \( 1 + 7.76e6T + 8.07e13T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.394625641796421373719006181565, −8.551101947914979701455202661573, −6.84209267072664409598067838731, −6.27207496983061366711120498900, −5.86190243773638856056670402868, −4.63219981926432132653450629151, −3.43319138671183374778856277303, −2.59179099878345394664280960881, −1.36620458845618597343628635512, 0, 1.36620458845618597343628635512, 2.59179099878345394664280960881, 3.43319138671183374778856277303, 4.63219981926432132653450629151, 5.86190243773638856056670402868, 6.27207496983061366711120498900, 6.84209267072664409598067838731, 8.551101947914979701455202661573, 9.394625641796421373719006181565

Graph of the $Z$-function along the critical line