L(s) = 1 | + 2.90·3-s + 2·5-s − 0.779·7-s + 5.46·9-s + 5.03·11-s + 5.81·15-s − 6.46·17-s + 0.779·19-s − 2.26·21-s + 7.16·23-s − 25-s + 7.16·27-s + 3·29-s + 1.55·31-s + 14.6·33-s − 1.55·35-s + 4.26·37-s − 3.19·41-s − 8.72·43-s + 10.9·45-s + 7.37·47-s − 6.39·49-s − 18.8·51-s + 9.46·53-s + 10.0·55-s + 2.26·57-s − 12.4·59-s + ⋯ |
L(s) = 1 | + 1.67·3-s + 0.894·5-s − 0.294·7-s + 1.82·9-s + 1.51·11-s + 1.50·15-s − 1.56·17-s + 0.178·19-s − 0.494·21-s + 1.49·23-s − 0.200·25-s + 1.37·27-s + 0.557·29-s + 0.280·31-s + 2.55·33-s − 0.263·35-s + 0.701·37-s − 0.499·41-s − 1.33·43-s + 1.62·45-s + 1.07·47-s − 0.913·49-s − 2.63·51-s + 1.29·53-s + 1.35·55-s + 0.300·57-s − 1.61·59-s + ⋯ |
Λ(s)=(=(5408s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(5408s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
4.884169624 |
L(21) |
≈ |
4.884169624 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 13 | 1 |
good | 3 | 1−2.90T+3T2 |
| 5 | 1−2T+5T2 |
| 7 | 1+0.779T+7T2 |
| 11 | 1−5.03T+11T2 |
| 17 | 1+6.46T+17T2 |
| 19 | 1−0.779T+19T2 |
| 23 | 1−7.16T+23T2 |
| 29 | 1−3T+29T2 |
| 31 | 1−1.55T+31T2 |
| 37 | 1−4.26T+37T2 |
| 41 | 1+3.19T+41T2 |
| 43 | 1+8.72T+43T2 |
| 47 | 1−7.37T+47T2 |
| 53 | 1−9.46T+53T2 |
| 59 | 1+12.4T+59T2 |
| 61 | 1−3T+61T2 |
| 67 | 1−0.779T+67T2 |
| 71 | 1−15.1T+71T2 |
| 73 | 1−6T+73T2 |
| 79 | 1+10.0T+79T2 |
| 83 | 1−10.0T+83T2 |
| 89 | 1−9.19T+89T2 |
| 97 | 1−10.2T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.460695621636765761500106931762, −7.50262596352735598612383420848, −6.61205385110675913215127124042, −6.47256619802580000826229932857, −5.12677623494920046051003888956, −4.26664682453302570013059360108, −3.58056082701344505131959704587, −2.74533127673538015364014662278, −2.05611678814104365367289862196, −1.21248115921947163502407719856,
1.21248115921947163502407719856, 2.05611678814104365367289862196, 2.74533127673538015364014662278, 3.58056082701344505131959704587, 4.26664682453302570013059360108, 5.12677623494920046051003888956, 6.47256619802580000826229932857, 6.61205385110675913215127124042, 7.50262596352735598612383420848, 8.460695621636765761500106931762