L(s) = 1 | − 6·7-s − 3·9-s + 6·11-s − 6·17-s − 6·19-s − 12·25-s + 6·29-s − 24·31-s + 12·47-s + 9·49-s − 24·53-s − 6·59-s − 18·61-s + 18·63-s − 30·67-s − 18·71-s − 36·77-s − 6·81-s − 36·83-s − 18·99-s − 18·101-s + 30·113-s + 36·119-s − 15·121-s + 127-s + 131-s + 36·133-s + ⋯ |
L(s) = 1 | − 2.26·7-s − 9-s + 1.80·11-s − 1.45·17-s − 1.37·19-s − 2.39·25-s + 1.11·29-s − 4.31·31-s + 1.75·47-s + 9/7·49-s − 3.29·53-s − 0.781·59-s − 2.30·61-s + 2.26·63-s − 3.66·67-s − 2.13·71-s − 4.10·77-s − 2/3·81-s − 3.95·83-s − 1.80·99-s − 1.79·101-s + 2.82·113-s + 3.30·119-s − 1.36·121-s + 0.0887·127-s + 0.0873·131-s + 3.12·133-s + ⋯ |
Λ(s)=(=((230⋅1312)s/2ΓC(s)6L(s)Λ(2−s)
Λ(s)=(=((230⋅1312)s/2ΓC(s+1/2)6L(s)Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 13 | 1 |
good | 3 | 1+pT2+5pT4+14pT6+5p3T8+p5T10+p6T12 |
| 5 | 1+12T2+48T4+118T6+48p2T8+12p4T10+p6T12 |
| 7 | (1+3T+9T2+26T3+9pT4+3p2T5+p3T6)2 |
| 11 | (1−3T+21T2−50T3+21pT4−3p2T5+p3T6)2 |
| 17 | (1+T+pT2)6 |
| 19 | (1+3T+39T2+78T3+39pT4+3p2T5+p3T6)2 |
| 23 | 1+3T2+327T4−9926T6+327p2T8+3p4T10+p6T12 |
| 29 | (1−3T+66T2−143T3+66pT4−3p2T5+p3T6)2 |
| 31 | (1+12T+117T2+720T3+117pT4+12p2T5+p3T6)2 |
| 37 | 1+141T2+9822T4+437033T6+9822p2T8+141p4T10+p6T12 |
| 41 | 1+165T2+13350T4+671185T6+13350p2T8+165p4T10+p6T12 |
| 43 | 1+159T2+13395T4+710714T6+13395p2T8+159p4T10+p6T12 |
| 47 | (1−6T+105T2−356T3+105pT4−6p2T5+p3T6)2 |
| 53 | (1+12T+186T2+1268T3+186pT4+12p2T5+p3T6)2 |
| 59 | (1+3T+105T2+34T3+105pT4+3p2T5+p3T6)2 |
| 61 | (1+9T+162T2+861T3+162pT4+9p2T5+p3T6)2 |
| 67 | (1+15T+171T2+1222T3+171pT4+15p2T5+p3T6)2 |
| 71 | (1+9T+219T2+1258T3+219pT4+9p2T5+p3T6)2 |
| 73 | 1+204T2+27696T4+2359118T6+27696p2T8+204p4T10+p6T12 |
| 79 | 1+78T2+11487T4+1040996T6+11487p2T8+78p4T10+p6T12 |
| 83 | (1+18T+297T2+2860T3+297pT4+18p2T5+p3T6)2 |
| 89 | 1+99T2+21795T4+1563778T6+21795p2T8+99p4T10+p6T12 |
| 97 | 1+267T2+38355T4+4179602T6+38355p2T8+267p4T10+p6T12 |
show more | |
show less | |
L(s)=p∏ j=1∏12(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−4.48766409520434107982067950529, −4.34258407000099000504783092455, −4.32931945686186841540505783581, −4.16109199379403991669064849817, −4.13927376154044942543925369011, −3.83811994009846207999911935253, −3.80173021184388771907555792360, −3.51996184189447659278502805493, −3.39952991168740037849350365139, −3.33143201013295558085777338226, −3.21854650908424466760777774395, −3.15266693306383504762731323887, −3.11557953033200559250174127929, −2.75496763006946786643693295169, −2.55027925300090534891806779363, −2.41083640231504220468308128770, −2.31324370298039387205154172010, −2.19925141910419266438701412431, −2.10043861106555732281903691750, −1.65270321050962222121567897004, −1.63511445230337642103434733710, −1.37328935951377395597195585054, −1.36973162213030659734144985095, −1.21544427435691185965417242963, −1.01476566759720851377389782471, 0, 0, 0, 0, 0, 0,
1.01476566759720851377389782471, 1.21544427435691185965417242963, 1.36973162213030659734144985095, 1.37328935951377395597195585054, 1.63511445230337642103434733710, 1.65270321050962222121567897004, 2.10043861106555732281903691750, 2.19925141910419266438701412431, 2.31324370298039387205154172010, 2.41083640231504220468308128770, 2.55027925300090534891806779363, 2.75496763006946786643693295169, 3.11557953033200559250174127929, 3.15266693306383504762731323887, 3.21854650908424466760777774395, 3.33143201013295558085777338226, 3.39952991168740037849350365139, 3.51996184189447659278502805493, 3.80173021184388771907555792360, 3.83811994009846207999911935253, 4.13927376154044942543925369011, 4.16109199379403991669064849817, 4.32931945686186841540505783581, 4.34258407000099000504783092455, 4.48766409520434107982067950529
Plot not available for L-functions of degree greater than 10.