Properties

Label 2-55-55.54-c2-0-6
Degree $2$
Conductor $55$
Sign $1$
Analytic cond. $1.49864$
Root an. cond. $1.22419$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3.31·2-s + 7·4-s − 5·5-s − 13.2·7-s + 9.94·8-s + 9·9-s − 16.5·10-s + 11·11-s + 13.2·13-s − 44·14-s + 5.00·16-s − 13.2·17-s + 29.8·18-s − 35·20-s + 36.4·22-s + 25·25-s + 44·26-s − 92.8·28-s − 18·31-s − 23.2·32-s − 44·34-s + 66.3·35-s + 63·36-s − 49.7·40-s + 13.2·43-s + 77·44-s − 45·45-s + ⋯
L(s)  = 1  + 1.65·2-s + 1.75·4-s − 5-s − 1.89·7-s + 1.24·8-s + 9-s − 1.65·10-s + 11-s + 1.02·13-s − 3.14·14-s + 0.312·16-s − 0.780·17-s + 1.65·18-s − 1.75·20-s + 1.65·22-s + 25-s + 1.69·26-s − 3.31·28-s − 0.580·31-s − 0.725·32-s − 1.29·34-s + 1.89·35-s + 1.75·36-s − 1.24·40-s + 0.308·43-s + 1.75·44-s − 45-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 55 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 55 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(55\)    =    \(5 \cdot 11\)
Sign: $1$
Analytic conductor: \(1.49864\)
Root analytic conductor: \(1.22419\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{55} (54, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 55,\ (\ :1),\ 1)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(2.160980100\)
\(L(\frac12)\) \(\approx\) \(2.160980100\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + 5T \)
11 \( 1 - 11T \)
good2 \( 1 - 3.31T + 4T^{2} \)
3 \( 1 - 9T^{2} \)
7 \( 1 + 13.2T + 49T^{2} \)
13 \( 1 - 13.2T + 169T^{2} \)
17 \( 1 + 13.2T + 289T^{2} \)
19 \( 1 - 361T^{2} \)
23 \( 1 - 529T^{2} \)
29 \( 1 - 841T^{2} \)
31 \( 1 + 18T + 961T^{2} \)
37 \( 1 - 1.36e3T^{2} \)
41 \( 1 - 1.68e3T^{2} \)
43 \( 1 - 13.2T + 1.84e3T^{2} \)
47 \( 1 - 2.20e3T^{2} \)
53 \( 1 - 2.80e3T^{2} \)
59 \( 1 + 102T + 3.48e3T^{2} \)
61 \( 1 - 3.72e3T^{2} \)
67 \( 1 - 4.48e3T^{2} \)
71 \( 1 + 78T + 5.04e3T^{2} \)
73 \( 1 - 145.T + 5.32e3T^{2} \)
79 \( 1 - 6.24e3T^{2} \)
83 \( 1 - 13.2T + 6.88e3T^{2} \)
89 \( 1 + 2T + 7.92e3T^{2} \)
97 \( 1 - 9.40e3T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.15977275342733538936259310541, −13.68604631089774728647444598586, −12.85751225428424224926627399519, −12.16086094783261546702091020396, −10.89069731795278505466154426713, −9.216808936737792909745846887712, −7.01006237305235694954774519466, −6.26572071138714327474507278724, −4.20455777884498723889584370787, −3.41520667080129417067827701771, 3.41520667080129417067827701771, 4.20455777884498723889584370787, 6.26572071138714327474507278724, 7.01006237305235694954774519466, 9.216808936737792909745846887712, 10.89069731795278505466154426713, 12.16086094783261546702091020396, 12.85751225428424224926627399519, 13.68604631089774728647444598586, 15.15977275342733538936259310541

Graph of the $Z$-function along the critical line