Properties

Label 2-560-28.27-c1-0-14
Degree $2$
Conductor $560$
Sign $0.217 + 0.976i$
Analytic cond. $4.47162$
Root an. cond. $2.11462$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.792·3-s i·5-s + (0.792 − 2.52i)7-s − 2.37·9-s + 0.792i·11-s − 5.37i·13-s − 0.792i·15-s − 3.37i·17-s + 3.46·19-s + (0.627 − 2i)21-s + 1.87i·23-s − 25-s − 4.25·27-s − 5.37·29-s + 8.51·31-s + ⋯
L(s)  = 1  + 0.457·3-s − 0.447i·5-s + (0.299 − 0.954i)7-s − 0.790·9-s + 0.238i·11-s − 1.49i·13-s − 0.204i·15-s − 0.817i·17-s + 0.794·19-s + (0.136 − 0.436i)21-s + 0.391i·23-s − 0.200·25-s − 0.819·27-s − 0.997·29-s + 1.52·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 560 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.217 + 0.976i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 560 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.217 + 0.976i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(560\)    =    \(2^{4} \cdot 5 \cdot 7\)
Sign: $0.217 + 0.976i$
Analytic conductor: \(4.47162\)
Root analytic conductor: \(2.11462\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{560} (111, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 560,\ (\ :1/2),\ 0.217 + 0.976i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.19103 - 0.954627i\)
\(L(\frac12)\) \(\approx\) \(1.19103 - 0.954627i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 + iT \)
7 \( 1 + (-0.792 + 2.52i)T \)
good3 \( 1 - 0.792T + 3T^{2} \)
11 \( 1 - 0.792iT - 11T^{2} \)
13 \( 1 + 5.37iT - 13T^{2} \)
17 \( 1 + 3.37iT - 17T^{2} \)
19 \( 1 - 3.46T + 19T^{2} \)
23 \( 1 - 1.87iT - 23T^{2} \)
29 \( 1 + 5.37T + 29T^{2} \)
31 \( 1 - 8.51T + 31T^{2} \)
37 \( 1 + 0.744T + 37T^{2} \)
41 \( 1 + 2.74iT - 41T^{2} \)
43 \( 1 - 3.46iT - 43T^{2} \)
47 \( 1 - 11.1T + 47T^{2} \)
53 \( 1 - 11.4T + 53T^{2} \)
59 \( 1 + 6.63T + 59T^{2} \)
61 \( 1 + 0.744iT - 61T^{2} \)
67 \( 1 - 6.63iT - 67T^{2} \)
71 \( 1 - 6.63iT - 71T^{2} \)
73 \( 1 + 2.74iT - 73T^{2} \)
79 \( 1 + 14.0iT - 79T^{2} \)
83 \( 1 + 10.3T + 83T^{2} \)
89 \( 1 - 17.4iT - 89T^{2} \)
97 \( 1 - 2.11iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.50033496105915012548710564329, −9.701457296850864837353277549831, −8.754239598119543585691296179977, −7.85047050348669740663338772051, −7.30936714052034587178860416233, −5.80487789808952520827389354912, −4.99016556458775371605127226468, −3.73694088137488497715633539865, −2.67998007498232105714427320259, −0.852196764176956167594421133826, 1.98455337630517258130088171025, 2.98305896971452687825074632131, 4.21298435153084184692151385635, 5.55315259451073591079431535186, 6.32283972230676409857494647301, 7.45913656893164379496827278184, 8.523931283403547355494201607478, 8.989554821247115217532852079475, 9.964021733565200714398167361599, 11.15871780330331162744779668315

Graph of the $Z$-function along the critical line