L(s) = 1 | + 0.792·3-s − i·5-s + (0.792 − 2.52i)7-s − 2.37·9-s + 0.792i·11-s − 5.37i·13-s − 0.792i·15-s − 3.37i·17-s + 3.46·19-s + (0.627 − 2i)21-s + 1.87i·23-s − 25-s − 4.25·27-s − 5.37·29-s + 8.51·31-s + ⋯ |
L(s) = 1 | + 0.457·3-s − 0.447i·5-s + (0.299 − 0.954i)7-s − 0.790·9-s + 0.238i·11-s − 1.49i·13-s − 0.204i·15-s − 0.817i·17-s + 0.794·19-s + (0.136 − 0.436i)21-s + 0.391i·23-s − 0.200·25-s − 0.819·27-s − 0.997·29-s + 1.52·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 560 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.217 + 0.976i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 560 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.217 + 0.976i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.19103 - 0.954627i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.19103 - 0.954627i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + iT \) |
| 7 | \( 1 + (-0.792 + 2.52i)T \) |
good | 3 | \( 1 - 0.792T + 3T^{2} \) |
| 11 | \( 1 - 0.792iT - 11T^{2} \) |
| 13 | \( 1 + 5.37iT - 13T^{2} \) |
| 17 | \( 1 + 3.37iT - 17T^{2} \) |
| 19 | \( 1 - 3.46T + 19T^{2} \) |
| 23 | \( 1 - 1.87iT - 23T^{2} \) |
| 29 | \( 1 + 5.37T + 29T^{2} \) |
| 31 | \( 1 - 8.51T + 31T^{2} \) |
| 37 | \( 1 + 0.744T + 37T^{2} \) |
| 41 | \( 1 + 2.74iT - 41T^{2} \) |
| 43 | \( 1 - 3.46iT - 43T^{2} \) |
| 47 | \( 1 - 11.1T + 47T^{2} \) |
| 53 | \( 1 - 11.4T + 53T^{2} \) |
| 59 | \( 1 + 6.63T + 59T^{2} \) |
| 61 | \( 1 + 0.744iT - 61T^{2} \) |
| 67 | \( 1 - 6.63iT - 67T^{2} \) |
| 71 | \( 1 - 6.63iT - 71T^{2} \) |
| 73 | \( 1 + 2.74iT - 73T^{2} \) |
| 79 | \( 1 + 14.0iT - 79T^{2} \) |
| 83 | \( 1 + 10.3T + 83T^{2} \) |
| 89 | \( 1 - 17.4iT - 89T^{2} \) |
| 97 | \( 1 - 2.11iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.50033496105915012548710564329, −9.701457296850864837353277549831, −8.754239598119543585691296179977, −7.85047050348669740663338772051, −7.30936714052034587178860416233, −5.80487789808952520827389354912, −4.99016556458775371605127226468, −3.73694088137488497715633539865, −2.67998007498232105714427320259, −0.852196764176956167594421133826,
1.98455337630517258130088171025, 2.98305896971452687825074632131, 4.21298435153084184692151385635, 5.55315259451073591079431535186, 6.32283972230676409857494647301, 7.45913656893164379496827278184, 8.523931283403547355494201607478, 8.989554821247115217532852079475, 9.964021733565200714398167361599, 11.15871780330331162744779668315