L(s) = 1 | + (2.81 + 1.04i)3-s + (−5.41 + 3.12i)5-s + (−3.74 + 6.49i)7-s + (6.81 + 5.87i)9-s + (−6.17 − 3.56i)11-s + (0.888 + 1.53i)13-s + (−18.4 + 3.13i)15-s − 14.7i·17-s − 19.9·19-s + (−17.3 + 14.3i)21-s + (20.8 − 12.0i)23-s + (7.03 − 12.1i)25-s + (13.0 + 23.6i)27-s + (−40.1 − 23.1i)29-s + (−14.1 − 24.5i)31-s + ⋯ |
L(s) = 1 | + (0.937 + 0.348i)3-s + (−1.08 + 0.625i)5-s + (−0.535 + 0.927i)7-s + (0.757 + 0.653i)9-s + (−0.561 − 0.324i)11-s + (0.0683 + 0.118i)13-s + (−1.23 + 0.208i)15-s − 0.869i·17-s − 1.04·19-s + (−0.825 + 0.682i)21-s + (0.907 − 0.523i)23-s + (0.281 − 0.487i)25-s + (0.482 + 0.876i)27-s + (−1.38 − 0.798i)29-s + (−0.456 − 0.790i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 576 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.987 + 0.160i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 576 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.987 + 0.160i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.6274600390\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6274600390\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-2.81 - 1.04i)T \) |
good | 5 | \( 1 + (5.41 - 3.12i)T + (12.5 - 21.6i)T^{2} \) |
| 7 | \( 1 + (3.74 - 6.49i)T + (-24.5 - 42.4i)T^{2} \) |
| 11 | \( 1 + (6.17 + 3.56i)T + (60.5 + 104. i)T^{2} \) |
| 13 | \( 1 + (-0.888 - 1.53i)T + (-84.5 + 146. i)T^{2} \) |
| 17 | \( 1 + 14.7iT - 289T^{2} \) |
| 19 | \( 1 + 19.9T + 361T^{2} \) |
| 23 | \( 1 + (-20.8 + 12.0i)T + (264.5 - 458. i)T^{2} \) |
| 29 | \( 1 + (40.1 + 23.1i)T + (420.5 + 728. i)T^{2} \) |
| 31 | \( 1 + (14.1 + 24.5i)T + (-480.5 + 832. i)T^{2} \) |
| 37 | \( 1 + 63.0T + 1.36e3T^{2} \) |
| 41 | \( 1 + (28.0 - 16.1i)T + (840.5 - 1.45e3i)T^{2} \) |
| 43 | \( 1 + (38.8 - 67.2i)T + (-924.5 - 1.60e3i)T^{2} \) |
| 47 | \( 1 + (-38.4 - 22.2i)T + (1.10e3 + 1.91e3i)T^{2} \) |
| 53 | \( 1 - 42.2iT - 2.80e3T^{2} \) |
| 59 | \( 1 + (-93.8 + 54.2i)T + (1.74e3 - 3.01e3i)T^{2} \) |
| 61 | \( 1 + (-25.3 + 43.9i)T + (-1.86e3 - 3.22e3i)T^{2} \) |
| 67 | \( 1 + (-56.9 - 98.6i)T + (-2.24e3 + 3.88e3i)T^{2} \) |
| 71 | \( 1 - 85.2iT - 5.04e3T^{2} \) |
| 73 | \( 1 + 94.5T + 5.32e3T^{2} \) |
| 79 | \( 1 + (-35.6 + 61.6i)T + (-3.12e3 - 5.40e3i)T^{2} \) |
| 83 | \( 1 + (94.9 + 54.7i)T + (3.44e3 + 5.96e3i)T^{2} \) |
| 89 | \( 1 - 29.6iT - 7.92e3T^{2} \) |
| 97 | \( 1 + (62.4 - 108. i)T + (-4.70e3 - 8.14e3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.00788281404749254138725283045, −10.01503411707402063999135484078, −9.103439027184293484872235006178, −8.396486637347083958931790813578, −7.54963876656390961614843636584, −6.69747818045561337860224188278, −5.34117030522141782559046135224, −4.11552556018328037025418957353, −3.17752539246226333909779257162, −2.37378314257602565736866982267,
0.20100833503977488700376981416, 1.77284869523360690348627761701, 3.50558360787498024634079562639, 3.92819307897025077968597678716, 5.22996040805975412069724062869, 6.97130464861260711336938666772, 7.27355453767083605159840568848, 8.451470199682550485824584819545, 8.792123996610746454263132563444, 10.11858382140991312695389592873