Properties

Label 2-24e2-9.2-c2-0-33
Degree $2$
Conductor $576$
Sign $0.383 + 0.923i$
Analytic cond. $15.6948$
Root an. cond. $3.96167$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−2.56 + 1.55i)3-s + (6.30 − 3.63i)5-s + (4.46 − 7.74i)7-s + (4.14 − 7.98i)9-s + (10.5 + 6.08i)11-s + (1.73 + 3.00i)13-s + (−10.4 + 19.1i)15-s − 33.3i·17-s − 33.3·19-s + (0.600 + 26.8i)21-s + (−15.8 + 9.16i)23-s + (13.9 − 24.2i)25-s + (1.81 + 26.9i)27-s + (−13.6 − 7.85i)29-s + (−6.66 − 11.5i)31-s + ⋯
L(s)  = 1  + (−0.854 + 0.519i)3-s + (1.26 − 0.727i)5-s + (0.638 − 1.10i)7-s + (0.460 − 0.887i)9-s + (0.958 + 0.553i)11-s + (0.133 + 0.231i)13-s + (−0.699 + 1.27i)15-s − 1.95i·17-s − 1.75·19-s + (0.0285 + 1.27i)21-s + (−0.690 + 0.398i)23-s + (0.558 − 0.968i)25-s + (0.0671 + 0.997i)27-s + (−0.469 − 0.270i)29-s + (−0.215 − 0.372i)31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 576 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.383 + 0.923i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 576 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.383 + 0.923i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(576\)    =    \(2^{6} \cdot 3^{2}\)
Sign: $0.383 + 0.923i$
Analytic conductor: \(15.6948\)
Root analytic conductor: \(3.96167\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{576} (65, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 576,\ (\ :1),\ 0.383 + 0.923i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(1.716485598\)
\(L(\frac12)\) \(\approx\) \(1.716485598\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + (2.56 - 1.55i)T \)
good5 \( 1 + (-6.30 + 3.63i)T + (12.5 - 21.6i)T^{2} \)
7 \( 1 + (-4.46 + 7.74i)T + (-24.5 - 42.4i)T^{2} \)
11 \( 1 + (-10.5 - 6.08i)T + (60.5 + 104. i)T^{2} \)
13 \( 1 + (-1.73 - 3.00i)T + (-84.5 + 146. i)T^{2} \)
17 \( 1 + 33.3iT - 289T^{2} \)
19 \( 1 + 33.3T + 361T^{2} \)
23 \( 1 + (15.8 - 9.16i)T + (264.5 - 458. i)T^{2} \)
29 \( 1 + (13.6 + 7.85i)T + (420.5 + 728. i)T^{2} \)
31 \( 1 + (6.66 + 11.5i)T + (-480.5 + 832. i)T^{2} \)
37 \( 1 - 35.3T + 1.36e3T^{2} \)
41 \( 1 + (-4.55 + 2.62i)T + (840.5 - 1.45e3i)T^{2} \)
43 \( 1 + (-20.1 + 34.9i)T + (-924.5 - 1.60e3i)T^{2} \)
47 \( 1 + (-29.9 - 17.2i)T + (1.10e3 + 1.91e3i)T^{2} \)
53 \( 1 - 15.9iT - 2.80e3T^{2} \)
59 \( 1 + (-16.8 + 9.70i)T + (1.74e3 - 3.01e3i)T^{2} \)
61 \( 1 + (7.12 - 12.3i)T + (-1.86e3 - 3.22e3i)T^{2} \)
67 \( 1 + (16.8 + 29.1i)T + (-2.24e3 + 3.88e3i)T^{2} \)
71 \( 1 - 21.5iT - 5.04e3T^{2} \)
73 \( 1 - 35.0T + 5.32e3T^{2} \)
79 \( 1 + (-75.5 + 130. i)T + (-3.12e3 - 5.40e3i)T^{2} \)
83 \( 1 + (107. + 62.2i)T + (3.44e3 + 5.96e3i)T^{2} \)
89 \( 1 - 58.9iT - 7.92e3T^{2} \)
97 \( 1 + (43.2 - 74.8i)T + (-4.70e3 - 8.14e3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.30811719661015166381674041664, −9.517948273008669391899044046738, −9.024148374083126147306061655693, −7.48768534181259830007993241597, −6.56554757619281212788517674840, −5.68707197481507910719356028234, −4.64462304743509205510005630109, −4.12809121659930898953386556819, −1.94665006557285751480469728869, −0.75276868366518392702435074579, 1.61227747406290665394590723141, 2.32313447230037218344751198992, 4.15562549616945390718301740502, 5.62393399592159239127750186232, 6.09579088763986353423009537194, 6.61402094753426990667998737976, 8.139259752521999808335125368971, 8.818982054658806306590280785900, 10.05362620224058166006351544571, 10.79842591508141887412862804593

Graph of the $Z$-function along the critical line