L(s) = 1 | + (−0.707 + 2.12i)5-s + 2.82·7-s + 4.24·17-s − 4i·23-s + (−3.99 − 3i)25-s + 4.24·29-s − 8.48i·31-s + (−2.00 + 6i)35-s + 6·37-s − 4.24i·41-s − 5.65i·43-s − 4i·47-s + 1.00·49-s + 4.24i·53-s + 12i·59-s + ⋯ |
L(s) = 1 | + (−0.316 + 0.948i)5-s + 1.06·7-s + 1.02·17-s − 0.834i·23-s + (−0.799 − 0.600i)25-s + 0.787·29-s − 1.52i·31-s + (−0.338 + 1.01i)35-s + 0.986·37-s − 0.662i·41-s − 0.862i·43-s − 0.583i·47-s + 0.142·49-s + 0.582i·53-s + 1.56i·59-s + ⋯ |
Λ(s)=(=(5760s/2ΓC(s)L(s)(0.988+0.151i)Λ(2−s)
Λ(s)=(=(5760s/2ΓC(s+1/2)L(s)(0.988+0.151i)Λ(1−s)
Degree: |
2 |
Conductor: |
5760
= 27⋅32⋅5
|
Sign: |
0.988+0.151i
|
Analytic conductor: |
45.9938 |
Root analytic conductor: |
6.78187 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ5760(2879,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 5760, ( :1/2), 0.988+0.151i)
|
Particular Values
L(1) |
≈ |
2.185869711 |
L(21) |
≈ |
2.185869711 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1+(0.707−2.12i)T |
good | 7 | 1−2.82T+7T2 |
| 11 | 1−11T2 |
| 13 | 1+13T2 |
| 17 | 1−4.24T+17T2 |
| 19 | 1+19T2 |
| 23 | 1+4iT−23T2 |
| 29 | 1−4.24T+29T2 |
| 31 | 1+8.48iT−31T2 |
| 37 | 1−6T+37T2 |
| 41 | 1+4.24iT−41T2 |
| 43 | 1+5.65iT−43T2 |
| 47 | 1+4iT−47T2 |
| 53 | 1−4.24iT−53T2 |
| 59 | 1−12iT−59T2 |
| 61 | 1+8iT−61T2 |
| 67 | 1+11.3iT−67T2 |
| 71 | 1−12T+71T2 |
| 73 | 1+6iT−73T2 |
| 79 | 1+8.48iT−79T2 |
| 83 | 1−4T+83T2 |
| 89 | 1−7.07iT−89T2 |
| 97 | 1−6iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.85439455667584582010179816474, −7.63971438908482009429392962392, −6.68254569661503189081587677878, −6.03003588519368312924565715996, −5.20869512070133951188578082011, −4.38502388096969163717252620122, −3.67934992940711884315638663380, −2.72025137987748086078361590478, −1.97527155561328159304785324036, −0.68448656404734519856781857105,
1.01737622402434434673120839396, 1.57739327321865674109395996583, 2.86168702193150599922765552129, 3.80018469238022702204798418264, 4.63699483908939159227837482055, 5.13880158617508285231346755160, 5.78596217989301688113056473305, 6.80251651685314032528018834640, 7.66125172031772712220923181857, 8.171753994990697508151275186078