Properties

Label 2-5760-120.59-c1-0-59
Degree $2$
Conductor $5760$
Sign $0.988 + 0.151i$
Analytic cond. $45.9938$
Root an. cond. $6.78187$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.707 + 2.12i)5-s + 2.82·7-s + 4.24·17-s − 4i·23-s + (−3.99 − 3i)25-s + 4.24·29-s − 8.48i·31-s + (−2.00 + 6i)35-s + 6·37-s − 4.24i·41-s − 5.65i·43-s − 4i·47-s + 1.00·49-s + 4.24i·53-s + 12i·59-s + ⋯
L(s)  = 1  + (−0.316 + 0.948i)5-s + 1.06·7-s + 1.02·17-s − 0.834i·23-s + (−0.799 − 0.600i)25-s + 0.787·29-s − 1.52i·31-s + (−0.338 + 1.01i)35-s + 0.986·37-s − 0.662i·41-s − 0.862i·43-s − 0.583i·47-s + 0.142·49-s + 0.582i·53-s + 1.56i·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5760 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.988 + 0.151i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5760 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.988 + 0.151i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5760\)    =    \(2^{7} \cdot 3^{2} \cdot 5\)
Sign: $0.988 + 0.151i$
Analytic conductor: \(45.9938\)
Root analytic conductor: \(6.78187\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{5760} (2879, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 5760,\ (\ :1/2),\ 0.988 + 0.151i)\)

Particular Values

\(L(1)\) \(\approx\) \(2.185869711\)
\(L(\frac12)\) \(\approx\) \(2.185869711\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + (0.707 - 2.12i)T \)
good7 \( 1 - 2.82T + 7T^{2} \)
11 \( 1 - 11T^{2} \)
13 \( 1 + 13T^{2} \)
17 \( 1 - 4.24T + 17T^{2} \)
19 \( 1 + 19T^{2} \)
23 \( 1 + 4iT - 23T^{2} \)
29 \( 1 - 4.24T + 29T^{2} \)
31 \( 1 + 8.48iT - 31T^{2} \)
37 \( 1 - 6T + 37T^{2} \)
41 \( 1 + 4.24iT - 41T^{2} \)
43 \( 1 + 5.65iT - 43T^{2} \)
47 \( 1 + 4iT - 47T^{2} \)
53 \( 1 - 4.24iT - 53T^{2} \)
59 \( 1 - 12iT - 59T^{2} \)
61 \( 1 + 8iT - 61T^{2} \)
67 \( 1 + 11.3iT - 67T^{2} \)
71 \( 1 - 12T + 71T^{2} \)
73 \( 1 + 6iT - 73T^{2} \)
79 \( 1 + 8.48iT - 79T^{2} \)
83 \( 1 - 4T + 83T^{2} \)
89 \( 1 - 7.07iT - 89T^{2} \)
97 \( 1 - 6iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.85439455667584582010179816474, −7.63971438908482009429392962392, −6.68254569661503189081587677878, −6.03003588519368312924565715996, −5.20869512070133951188578082011, −4.38502388096969163717252620122, −3.67934992940711884315638663380, −2.72025137987748086078361590478, −1.97527155561328159304785324036, −0.68448656404734519856781857105, 1.01737622402434434673120839396, 1.57739327321865674109395996583, 2.86168702193150599922765552129, 3.80018469238022702204798418264, 4.63699483908939159227837482055, 5.13880158617508285231346755160, 5.78596217989301688113056473305, 6.80251651685314032528018834640, 7.66125172031772712220923181857, 8.171753994990697508151275186078

Graph of the $Z$-function along the critical line