Properties

Label 20-585e10-1.1-c1e10-0-2
Degree $20$
Conductor $4.694\times 10^{27}$
Sign $1$
Analytic cond. $4.94686\times 10^{6}$
Root an. cond. $2.16130$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s + 4·4-s − 10·5-s − 7-s + 4·8-s − 20·10-s + 8·11-s + 13-s − 2·14-s + 6·16-s + 4·19-s − 40·20-s + 16·22-s − 6·23-s + 55·25-s + 2·26-s − 4·28-s + 16·29-s + 18·31-s + 6·32-s + 10·35-s + 4·37-s + 8·38-s − 40·40-s + 6·41-s − 15·43-s + 32·44-s + ⋯
L(s)  = 1  + 1.41·2-s + 2·4-s − 4.47·5-s − 0.377·7-s + 1.41·8-s − 6.32·10-s + 2.41·11-s + 0.277·13-s − 0.534·14-s + 3/2·16-s + 0.917·19-s − 8.94·20-s + 3.41·22-s − 1.25·23-s + 11·25-s + 0.392·26-s − 0.755·28-s + 2.97·29-s + 3.23·31-s + 1.06·32-s + 1.69·35-s + 0.657·37-s + 1.29·38-s − 6.32·40-s + 0.937·41-s − 2.28·43-s + 4.82·44-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{20} \cdot 5^{10} \cdot 13^{10}\right)^{s/2} \, \Gamma_{\C}(s)^{10} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{20} \cdot 5^{10} \cdot 13^{10}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{10} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(20\)
Conductor: \(3^{20} \cdot 5^{10} \cdot 13^{10}\)
Sign: $1$
Analytic conductor: \(4.94686\times 10^{6}\)
Root analytic conductor: \(2.16130\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((20,\ 3^{20} \cdot 5^{10} \cdot 13^{10} ,\ ( \ : [1/2]^{10} ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(11.61921114\)
\(L(\frac12)\) \(\approx\) \(11.61921114\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( ( 1 + T )^{10} \)
13 \( 1 - T - 21 T^{2} + 106 T^{3} + 185 T^{4} - 2013 T^{5} + 185 p T^{6} + 106 p^{2} T^{7} - 21 p^{3} T^{8} - p^{4} T^{9} + p^{5} T^{10} \)
good2 \( 1 - p T + p^{2} T^{3} - 3 p T^{4} + p T^{5} + p^{3} T^{6} - 3 p^{2} T^{7} + p^{2} T^{9} + 3 p^{2} T^{10} + p^{3} T^{11} - 3 p^{5} T^{13} + p^{7} T^{14} + p^{6} T^{15} - 3 p^{7} T^{16} + p^{9} T^{17} - p^{10} T^{19} + p^{10} T^{20} \)
7 \( 1 + T - 12 T^{2} + T^{3} + 88 T^{4} - 37 T^{5} + 76 T^{6} + 359 T^{7} - 5281 T^{8} - 4 p^{2} T^{9} + 8116 p T^{10} - 4 p^{3} T^{11} - 5281 p^{2} T^{12} + 359 p^{3} T^{13} + 76 p^{4} T^{14} - 37 p^{5} T^{15} + 88 p^{6} T^{16} + p^{7} T^{17} - 12 p^{8} T^{18} + p^{9} T^{19} + p^{10} T^{20} \)
11 \( 1 - 8 T + 9 T^{2} + 136 T^{3} - 537 T^{4} - 136 T^{5} + 6038 T^{6} - 21216 T^{7} + 31725 T^{8} + 137272 T^{9} - 918177 T^{10} + 137272 p T^{11} + 31725 p^{2} T^{12} - 21216 p^{3} T^{13} + 6038 p^{4} T^{14} - 136 p^{5} T^{15} - 537 p^{6} T^{16} + 136 p^{7} T^{17} + 9 p^{8} T^{18} - 8 p^{9} T^{19} + p^{10} T^{20} \)
17 \( 1 - 35 T^{2} + 28 T^{3} + 315 T^{4} - 324 T^{5} - 42 p T^{6} - 28406 T^{7} + 117019 T^{8} + 442610 T^{9} - 3489795 T^{10} + 442610 p T^{11} + 117019 p^{2} T^{12} - 28406 p^{3} T^{13} - 42 p^{5} T^{14} - 324 p^{5} T^{15} + 315 p^{6} T^{16} + 28 p^{7} T^{17} - 35 p^{8} T^{18} + p^{10} T^{20} \)
19 \( 1 - 4 T - 71 T^{2} + 188 T^{3} + 3347 T^{4} - 5424 T^{5} - 5882 p T^{6} + 91244 T^{7} + 2934257 T^{8} - 702040 T^{9} - 61778793 T^{10} - 702040 p T^{11} + 2934257 p^{2} T^{12} + 91244 p^{3} T^{13} - 5882 p^{5} T^{14} - 5424 p^{5} T^{15} + 3347 p^{6} T^{16} + 188 p^{7} T^{17} - 71 p^{8} T^{18} - 4 p^{9} T^{19} + p^{10} T^{20} \)
23 \( 1 + 6 T - 59 T^{2} - 462 T^{3} + 1899 T^{4} + 17976 T^{5} - 35110 T^{6} - 381456 T^{7} + 619997 T^{8} + 3636078 T^{9} - 11442537 T^{10} + 3636078 p T^{11} + 619997 p^{2} T^{12} - 381456 p^{3} T^{13} - 35110 p^{4} T^{14} + 17976 p^{5} T^{15} + 1899 p^{6} T^{16} - 462 p^{7} T^{17} - 59 p^{8} T^{18} + 6 p^{9} T^{19} + p^{10} T^{20} \)
29 \( 1 - 16 T + 53 T^{2} + 280 T^{3} - 3 p T^{4} - 14930 T^{5} + 13984 T^{6} - 100288 T^{7} + 3893633 T^{8} - 2571612 T^{9} - 117536991 T^{10} - 2571612 p T^{11} + 3893633 p^{2} T^{12} - 100288 p^{3} T^{13} + 13984 p^{4} T^{14} - 14930 p^{5} T^{15} - 3 p^{7} T^{16} + 280 p^{7} T^{17} + 53 p^{8} T^{18} - 16 p^{9} T^{19} + p^{10} T^{20} \)
31 \( ( 1 - 9 T + 125 T^{2} - 938 T^{3} + 7513 T^{4} - 40255 T^{5} + 7513 p T^{6} - 938 p^{2} T^{7} + 125 p^{3} T^{8} - 9 p^{4} T^{9} + p^{5} T^{10} )^{2} \)
37 \( 1 - 4 T - 105 T^{2} + 812 T^{3} + 5223 T^{4} - 60656 T^{5} - 48342 T^{6} + 2598544 T^{7} - 6880531 T^{8} - 41122020 T^{9} + 443418561 T^{10} - 41122020 p T^{11} - 6880531 p^{2} T^{12} + 2598544 p^{3} T^{13} - 48342 p^{4} T^{14} - 60656 p^{5} T^{15} + 5223 p^{6} T^{16} + 812 p^{7} T^{17} - 105 p^{8} T^{18} - 4 p^{9} T^{19} + p^{10} T^{20} \)
41 \( 1 - 6 T - 71 T^{2} + 198 T^{3} + 2037 T^{4} + 11598 T^{5} - 152896 T^{6} + 303432 T^{7} + 7372433 T^{8} - 28857882 T^{9} - 198785607 T^{10} - 28857882 p T^{11} + 7372433 p^{2} T^{12} + 303432 p^{3} T^{13} - 152896 p^{4} T^{14} + 11598 p^{5} T^{15} + 2037 p^{6} T^{16} + 198 p^{7} T^{17} - 71 p^{8} T^{18} - 6 p^{9} T^{19} + p^{10} T^{20} \)
43 \( 1 + 15 T - 20 T^{2} - 569 T^{3} + 8062 T^{4} + 40863 T^{5} - 572708 T^{6} - 1600281 T^{7} + 26293173 T^{8} - 7330552 T^{9} - 1511025092 T^{10} - 7330552 p T^{11} + 26293173 p^{2} T^{12} - 1600281 p^{3} T^{13} - 572708 p^{4} T^{14} + 40863 p^{5} T^{15} + 8062 p^{6} T^{16} - 569 p^{7} T^{17} - 20 p^{8} T^{18} + 15 p^{9} T^{19} + p^{10} T^{20} \)
47 \( ( 1 + 10 T + 145 T^{2} + 24 p T^{3} + 10018 T^{4} + 69286 T^{5} + 10018 p T^{6} + 24 p^{3} T^{7} + 145 p^{3} T^{8} + 10 p^{4} T^{9} + p^{5} T^{10} )^{2} \)
53 \( ( 1 - 20 T + 5 p T^{2} - 2368 T^{3} + 17722 T^{4} - 123096 T^{5} + 17722 p T^{6} - 2368 p^{2} T^{7} + 5 p^{4} T^{8} - 20 p^{4} T^{9} + p^{5} T^{10} )^{2} \)
59 \( 1 - 12 T - 109 T^{2} + 1836 T^{3} + 7077 T^{4} - 158166 T^{5} - 285300 T^{6} + 9000432 T^{7} + 1945509 T^{8} - 240199128 T^{9} + 613215327 T^{10} - 240199128 p T^{11} + 1945509 p^{2} T^{12} + 9000432 p^{3} T^{13} - 285300 p^{4} T^{14} - 158166 p^{5} T^{15} + 7077 p^{6} T^{16} + 1836 p^{7} T^{17} - 109 p^{8} T^{18} - 12 p^{9} T^{19} + p^{10} T^{20} \)
61 \( 1 + 11 T - 170 T^{2} - 1355 T^{3} + 25322 T^{4} + 107353 T^{5} - 2797432 T^{6} - 6232727 T^{7} + 234614309 T^{8} + 184344598 T^{9} - 15525735436 T^{10} + 184344598 p T^{11} + 234614309 p^{2} T^{12} - 6232727 p^{3} T^{13} - 2797432 p^{4} T^{14} + 107353 p^{5} T^{15} + 25322 p^{6} T^{16} - 1355 p^{7} T^{17} - 170 p^{8} T^{18} + 11 p^{9} T^{19} + p^{10} T^{20} \)
67 \( 1 + 5 T - 266 T^{2} - 1217 T^{3} + 41876 T^{4} + 161677 T^{5} - 4557484 T^{6} - 11713703 T^{7} + 393911771 T^{8} + 360277294 T^{9} - 28368034144 T^{10} + 360277294 p T^{11} + 393911771 p^{2} T^{12} - 11713703 p^{3} T^{13} - 4557484 p^{4} T^{14} + 161677 p^{5} T^{15} + 41876 p^{6} T^{16} - 1217 p^{7} T^{17} - 266 p^{8} T^{18} + 5 p^{9} T^{19} + p^{10} T^{20} \)
71 \( 1 - 10 T - 233 T^{2} + 1642 T^{3} + 40821 T^{4} - 175708 T^{5} - 4974832 T^{6} + 10835286 T^{7} + 479818097 T^{8} - 291547112 T^{9} - 37711050573 T^{10} - 291547112 p T^{11} + 479818097 p^{2} T^{12} + 10835286 p^{3} T^{13} - 4974832 p^{4} T^{14} - 175708 p^{5} T^{15} + 40821 p^{6} T^{16} + 1642 p^{7} T^{17} - 233 p^{8} T^{18} - 10 p^{9} T^{19} + p^{10} T^{20} \)
73 \( ( 1 - T + 129 T^{2} - 148 T^{3} + 13711 T^{4} - 1257 T^{5} + 13711 p T^{6} - 148 p^{2} T^{7} + 129 p^{3} T^{8} - p^{4} T^{9} + p^{5} T^{10} )^{2} \)
79 \( ( 1 + 17 T + 369 T^{2} + 4286 T^{3} + 54349 T^{4} + 467343 T^{5} + 54349 p T^{6} + 4286 p^{2} T^{7} + 369 p^{3} T^{8} + 17 p^{4} T^{9} + p^{5} T^{10} )^{2} \)
83 \( ( 1 + 16 T + 299 T^{2} + 3252 T^{3} + 38638 T^{4} + 325648 T^{5} + 38638 p T^{6} + 3252 p^{2} T^{7} + 299 p^{3} T^{8} + 16 p^{4} T^{9} + p^{5} T^{10} )^{2} \)
89 \( 1 - 4 T - 327 T^{2} + 1320 T^{3} + 60217 T^{4} - 221568 T^{5} - 7481300 T^{6} + 21676602 T^{7} + 726349165 T^{8} - 826863906 T^{9} - 65088711959 T^{10} - 826863906 p T^{11} + 726349165 p^{2} T^{12} + 21676602 p^{3} T^{13} - 7481300 p^{4} T^{14} - 221568 p^{5} T^{15} + 60217 p^{6} T^{16} + 1320 p^{7} T^{17} - 327 p^{8} T^{18} - 4 p^{9} T^{19} + p^{10} T^{20} \)
97 \( 1 - 11 T - 234 T^{2} + 419 T^{3} + 54134 T^{4} + 86137 T^{5} - 5323566 T^{6} - 30313009 T^{7} + 338701565 T^{8} + 1490050320 T^{9} - 15821303860 T^{10} + 1490050320 p T^{11} + 338701565 p^{2} T^{12} - 30313009 p^{3} T^{13} - 5323566 p^{4} T^{14} + 86137 p^{5} T^{15} + 54134 p^{6} T^{16} + 419 p^{7} T^{17} - 234 p^{8} T^{18} - 11 p^{9} T^{19} + p^{10} T^{20} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{20} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−3.92077195501973632658157754023, −3.82114626857104250181853071340, −3.75801662527586584375552614411, −3.59898451390508016439093050041, −3.54553934900317029430149395806, −3.45962494245081517311096089939, −3.39612450331145986062101219649, −3.23577558499124725871142205990, −3.12398047394544547838782229573, −3.02432461290945445436867528633, −2.95519764124746822175091904104, −2.76070713127332083937670663946, −2.64131739105933418185145271968, −2.55963128393530351015437525547, −2.22218455976849604029564765924, −2.21375426964418622656186514437, −2.02439802509190014260273124543, −1.68522764645946517728936713467, −1.68271710606772950029574643307, −1.25160711772903179486485181586, −1.10492623093241095047129026657, −0.929091680662446651858634592799, −0.75487914430656409040485524777, −0.68718210871169463147620788087, −0.41813823383855153823387318029, 0.41813823383855153823387318029, 0.68718210871169463147620788087, 0.75487914430656409040485524777, 0.929091680662446651858634592799, 1.10492623093241095047129026657, 1.25160711772903179486485181586, 1.68271710606772950029574643307, 1.68522764645946517728936713467, 2.02439802509190014260273124543, 2.21375426964418622656186514437, 2.22218455976849604029564765924, 2.55963128393530351015437525547, 2.64131739105933418185145271968, 2.76070713127332083937670663946, 2.95519764124746822175091904104, 3.02432461290945445436867528633, 3.12398047394544547838782229573, 3.23577558499124725871142205990, 3.39612450331145986062101219649, 3.45962494245081517311096089939, 3.54553934900317029430149395806, 3.59898451390508016439093050041, 3.75801662527586584375552614411, 3.82114626857104250181853071340, 3.92077195501973632658157754023

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.