L(s) = 1 | + 2·2-s + 4·4-s − 10·5-s − 7-s + 4·8-s − 20·10-s + 8·11-s + 13-s − 2·14-s + 6·16-s + 4·19-s − 40·20-s + 16·22-s − 6·23-s + 55·25-s + 2·26-s − 4·28-s + 16·29-s + 18·31-s + 6·32-s + 10·35-s + 4·37-s + 8·38-s − 40·40-s + 6·41-s − 15·43-s + 32·44-s + ⋯ |
L(s) = 1 | + 1.41·2-s + 2·4-s − 4.47·5-s − 0.377·7-s + 1.41·8-s − 6.32·10-s + 2.41·11-s + 0.277·13-s − 0.534·14-s + 3/2·16-s + 0.917·19-s − 8.94·20-s + 3.41·22-s − 1.25·23-s + 11·25-s + 0.392·26-s − 0.755·28-s + 2.97·29-s + 3.23·31-s + 1.06·32-s + 1.69·35-s + 0.657·37-s + 1.29·38-s − 6.32·40-s + 0.937·41-s − 2.28·43-s + 4.82·44-s + ⋯ |
Λ(s)=(=((320⋅510⋅1310)s/2ΓC(s)10L(s)Λ(2−s)
Λ(s)=(=((320⋅510⋅1310)s/2ΓC(s+1/2)10L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
11.61921114 |
L(21) |
≈ |
11.61921114 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 5 | (1+T)10 |
| 13 | 1−T−21T2+106T3+185T4−2013T5+185pT6+106p2T7−21p3T8−p4T9+p5T10 |
good | 2 | 1−pT+p2T3−3pT4+pT5+p3T6−3p2T7+p2T9+3p2T10+p3T11−3p5T13+p7T14+p6T15−3p7T16+p9T17−p10T19+p10T20 |
| 7 | 1+T−12T2+T3+88T4−37T5+76T6+359T7−5281T8−4p2T9+8116pT10−4p3T11−5281p2T12+359p3T13+76p4T14−37p5T15+88p6T16+p7T17−12p8T18+p9T19+p10T20 |
| 11 | 1−8T+9T2+136T3−537T4−136T5+6038T6−21216T7+31725T8+137272T9−918177T10+137272pT11+31725p2T12−21216p3T13+6038p4T14−136p5T15−537p6T16+136p7T17+9p8T18−8p9T19+p10T20 |
| 17 | 1−35T2+28T3+315T4−324T5−42pT6−28406T7+117019T8+442610T9−3489795T10+442610pT11+117019p2T12−28406p3T13−42p5T14−324p5T15+315p6T16+28p7T17−35p8T18+p10T20 |
| 19 | 1−4T−71T2+188T3+3347T4−5424T5−5882pT6+91244T7+2934257T8−702040T9−61778793T10−702040pT11+2934257p2T12+91244p3T13−5882p5T14−5424p5T15+3347p6T16+188p7T17−71p8T18−4p9T19+p10T20 |
| 23 | 1+6T−59T2−462T3+1899T4+17976T5−35110T6−381456T7+619997T8+3636078T9−11442537T10+3636078pT11+619997p2T12−381456p3T13−35110p4T14+17976p5T15+1899p6T16−462p7T17−59p8T18+6p9T19+p10T20 |
| 29 | 1−16T+53T2+280T3−3pT4−14930T5+13984T6−100288T7+3893633T8−2571612T9−117536991T10−2571612pT11+3893633p2T12−100288p3T13+13984p4T14−14930p5T15−3p7T16+280p7T17+53p8T18−16p9T19+p10T20 |
| 31 | (1−9T+125T2−938T3+7513T4−40255T5+7513pT6−938p2T7+125p3T8−9p4T9+p5T10)2 |
| 37 | 1−4T−105T2+812T3+5223T4−60656T5−48342T6+2598544T7−6880531T8−41122020T9+443418561T10−41122020pT11−6880531p2T12+2598544p3T13−48342p4T14−60656p5T15+5223p6T16+812p7T17−105p8T18−4p9T19+p10T20 |
| 41 | 1−6T−71T2+198T3+2037T4+11598T5−152896T6+303432T7+7372433T8−28857882T9−198785607T10−28857882pT11+7372433p2T12+303432p3T13−152896p4T14+11598p5T15+2037p6T16+198p7T17−71p8T18−6p9T19+p10T20 |
| 43 | 1+15T−20T2−569T3+8062T4+40863T5−572708T6−1600281T7+26293173T8−7330552T9−1511025092T10−7330552pT11+26293173p2T12−1600281p3T13−572708p4T14+40863p5T15+8062p6T16−569p7T17−20p8T18+15p9T19+p10T20 |
| 47 | (1+10T+145T2+24pT3+10018T4+69286T5+10018pT6+24p3T7+145p3T8+10p4T9+p5T10)2 |
| 53 | (1−20T+5pT2−2368T3+17722T4−123096T5+17722pT6−2368p2T7+5p4T8−20p4T9+p5T10)2 |
| 59 | 1−12T−109T2+1836T3+7077T4−158166T5−285300T6+9000432T7+1945509T8−240199128T9+613215327T10−240199128pT11+1945509p2T12+9000432p3T13−285300p4T14−158166p5T15+7077p6T16+1836p7T17−109p8T18−12p9T19+p10T20 |
| 61 | 1+11T−170T2−1355T3+25322T4+107353T5−2797432T6−6232727T7+234614309T8+184344598T9−15525735436T10+184344598pT11+234614309p2T12−6232727p3T13−2797432p4T14+107353p5T15+25322p6T16−1355p7T17−170p8T18+11p9T19+p10T20 |
| 67 | 1+5T−266T2−1217T3+41876T4+161677T5−4557484T6−11713703T7+393911771T8+360277294T9−28368034144T10+360277294pT11+393911771p2T12−11713703p3T13−4557484p4T14+161677p5T15+41876p6T16−1217p7T17−266p8T18+5p9T19+p10T20 |
| 71 | 1−10T−233T2+1642T3+40821T4−175708T5−4974832T6+10835286T7+479818097T8−291547112T9−37711050573T10−291547112pT11+479818097p2T12+10835286p3T13−4974832p4T14−175708p5T15+40821p6T16+1642p7T17−233p8T18−10p9T19+p10T20 |
| 73 | (1−T+129T2−148T3+13711T4−1257T5+13711pT6−148p2T7+129p3T8−p4T9+p5T10)2 |
| 79 | (1+17T+369T2+4286T3+54349T4+467343T5+54349pT6+4286p2T7+369p3T8+17p4T9+p5T10)2 |
| 83 | (1+16T+299T2+3252T3+38638T4+325648T5+38638pT6+3252p2T7+299p3T8+16p4T9+p5T10)2 |
| 89 | 1−4T−327T2+1320T3+60217T4−221568T5−7481300T6+21676602T7+726349165T8−826863906T9−65088711959T10−826863906pT11+726349165p2T12+21676602p3T13−7481300p4T14−221568p5T15+60217p6T16+1320p7T17−327p8T18−4p9T19+p10T20 |
| 97 | 1−11T−234T2+419T3+54134T4+86137T5−5323566T6−30313009T7+338701565T8+1490050320T9−15821303860T10+1490050320pT11+338701565p2T12−30313009p3T13−5323566p4T14+86137p5T15+54134p6T16+419p7T17−234p8T18−11p9T19+p10T20 |
show more | |
show less | |
L(s)=p∏ j=1∏20(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−3.92077195501973632658157754023, −3.82114626857104250181853071340, −3.75801662527586584375552614411, −3.59898451390508016439093050041, −3.54553934900317029430149395806, −3.45962494245081517311096089939, −3.39612450331145986062101219649, −3.23577558499124725871142205990, −3.12398047394544547838782229573, −3.02432461290945445436867528633, −2.95519764124746822175091904104, −2.76070713127332083937670663946, −2.64131739105933418185145271968, −2.55963128393530351015437525547, −2.22218455976849604029564765924, −2.21375426964418622656186514437, −2.02439802509190014260273124543, −1.68522764645946517728936713467, −1.68271710606772950029574643307, −1.25160711772903179486485181586, −1.10492623093241095047129026657, −0.929091680662446651858634592799, −0.75487914430656409040485524777, −0.68718210871169463147620788087, −0.41813823383855153823387318029,
0.41813823383855153823387318029, 0.68718210871169463147620788087, 0.75487914430656409040485524777, 0.929091680662446651858634592799, 1.10492623093241095047129026657, 1.25160711772903179486485181586, 1.68271710606772950029574643307, 1.68522764645946517728936713467, 2.02439802509190014260273124543, 2.21375426964418622656186514437, 2.22218455976849604029564765924, 2.55963128393530351015437525547, 2.64131739105933418185145271968, 2.76070713127332083937670663946, 2.95519764124746822175091904104, 3.02432461290945445436867528633, 3.12398047394544547838782229573, 3.23577558499124725871142205990, 3.39612450331145986062101219649, 3.45962494245081517311096089939, 3.54553934900317029430149395806, 3.59898451390508016439093050041, 3.75801662527586584375552614411, 3.82114626857104250181853071340, 3.92077195501973632658157754023
Plot not available for L-functions of degree greater than 10.