Properties

Label 2-59-59.58-c6-0-14
Degree $2$
Conductor $59$
Sign $0.0784 - 0.996i$
Analytic cond. $13.5731$
Root an. cond. $3.68418$
Motivic weight $6$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 7.19i·2-s + 44.5·3-s + 12.2·4-s + 52.8·5-s + 320. i·6-s − 372.·7-s + 548. i·8-s + 1.25e3·9-s + 380. i·10-s + 2.14e3i·11-s + 545.·12-s − 2.57e3i·13-s − 2.68e3i·14-s + 2.35e3·15-s − 3.16e3·16-s + 6.45e3·17-s + ⋯
L(s)  = 1  + 0.899i·2-s + 1.64·3-s + 0.191·4-s + 0.422·5-s + 1.48i·6-s − 1.08·7-s + 1.07i·8-s + 1.71·9-s + 0.380i·10-s + 1.61i·11-s + 0.315·12-s − 1.17i·13-s − 0.977i·14-s + 0.697·15-s − 0.772·16-s + 1.31·17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 59 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0784 - 0.996i)\, \overline{\Lambda}(7-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 59 ^{s/2} \, \Gamma_{\C}(s+3) \, L(s)\cr =\mathstrut & (0.0784 - 0.996i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(59\)
Sign: $0.0784 - 0.996i$
Analytic conductor: \(13.5731\)
Root analytic conductor: \(3.68418\)
Motivic weight: \(6\)
Rational: no
Arithmetic: yes
Character: $\chi_{59} (58, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 59,\ (\ :3),\ 0.0784 - 0.996i)\)

Particular Values

\(L(\frac{7}{2})\) \(\approx\) \(2.52702 + 2.33586i\)
\(L(\frac12)\) \(\approx\) \(2.52702 + 2.33586i\)
\(L(4)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad59 \( 1 + (1.61e4 - 2.04e5i)T \)
good2 \( 1 - 7.19iT - 64T^{2} \)
3 \( 1 - 44.5T + 729T^{2} \)
5 \( 1 - 52.8T + 1.56e4T^{2} \)
7 \( 1 + 372.T + 1.17e5T^{2} \)
11 \( 1 - 2.14e3iT - 1.77e6T^{2} \)
13 \( 1 + 2.57e3iT - 4.82e6T^{2} \)
17 \( 1 - 6.45e3T + 2.41e7T^{2} \)
19 \( 1 - 8.21e3T + 4.70e7T^{2} \)
23 \( 1 - 282. iT - 1.48e8T^{2} \)
29 \( 1 + 2.04e4T + 5.94e8T^{2} \)
31 \( 1 + 2.60e4iT - 8.87e8T^{2} \)
37 \( 1 + 3.97e4iT - 2.56e9T^{2} \)
41 \( 1 - 3.55e4T + 4.75e9T^{2} \)
43 \( 1 + 1.25e5iT - 6.32e9T^{2} \)
47 \( 1 + 1.25e5iT - 1.07e10T^{2} \)
53 \( 1 + 2.63e5T + 2.21e10T^{2} \)
61 \( 1 - 2.07e3iT - 5.15e10T^{2} \)
67 \( 1 + 8.63e4iT - 9.04e10T^{2} \)
71 \( 1 - 3.13e5T + 1.28e11T^{2} \)
73 \( 1 - 3.22e5iT - 1.51e11T^{2} \)
79 \( 1 - 2.95e5T + 2.43e11T^{2} \)
83 \( 1 + 8.92e5iT - 3.26e11T^{2} \)
89 \( 1 - 9.53e5iT - 4.96e11T^{2} \)
97 \( 1 + 5.62e5iT - 8.32e11T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.41699046349631564512899280490, −13.38237874173508550298074332590, −12.34399218315582363800369064316, −10.04321484634962290896088267647, −9.410615066226310294704090174598, −7.82761554848457513731917284178, −7.26197164482374990247643688104, −5.60941334388970655525126375135, −3.40183028099912807174147929079, −2.13804955975545090562474837398, 1.40432779906324150530149620729, 2.98249693097878440324157669151, 3.50892835632820820816036265078, 6.31008964894931993176933956818, 7.80133020226202297336562560166, 9.353494424190167826423012768244, 9.749452823884780017204180963314, 11.31647685402904419186164097014, 12.66071758383069082648117240467, 13.67674175519188480553877304193

Graph of the $Z$-function along the critical line