Properties

Label 2-78e2-1.1-c1-0-4
Degree $2$
Conductor $6084$
Sign $1$
Analytic cond. $48.5809$
Root an. cond. $6.97000$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.801·5-s − 3.69·7-s − 2.85·11-s − 4.44·17-s − 2.26·19-s − 7.78·23-s − 4.35·25-s − 0.246·29-s + 0.466·31-s − 2.96·35-s + 6.65·37-s + 8.63·41-s − 9.76·43-s + 11.8·47-s + 6.63·49-s + 8.94·53-s − 2.28·55-s + 0.396·59-s + 10.5·61-s − 3.30·67-s + 13.3·71-s + 10.2·73-s + 10.5·77-s − 9.72·79-s + 12.8·83-s − 3.56·85-s − 7.77·89-s + ⋯
L(s)  = 1  + 0.358·5-s − 1.39·7-s − 0.859·11-s − 1.07·17-s − 0.520·19-s − 1.62·23-s − 0.871·25-s − 0.0458·29-s + 0.0838·31-s − 0.500·35-s + 1.09·37-s + 1.34·41-s − 1.48·43-s + 1.73·47-s + 0.947·49-s + 1.22·53-s − 0.308·55-s + 0.0515·59-s + 1.35·61-s − 0.404·67-s + 1.58·71-s + 1.20·73-s + 1.19·77-s − 1.09·79-s + 1.40·83-s − 0.386·85-s − 0.824·89-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6084 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6084 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6084\)    =    \(2^{2} \cdot 3^{2} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(48.5809\)
Root analytic conductor: \(6.97000\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 6084,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.9434769416\)
\(L(\frac12)\) \(\approx\) \(0.9434769416\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
13 \( 1 \)
good5 \( 1 - 0.801T + 5T^{2} \)
7 \( 1 + 3.69T + 7T^{2} \)
11 \( 1 + 2.85T + 11T^{2} \)
17 \( 1 + 4.44T + 17T^{2} \)
19 \( 1 + 2.26T + 19T^{2} \)
23 \( 1 + 7.78T + 23T^{2} \)
29 \( 1 + 0.246T + 29T^{2} \)
31 \( 1 - 0.466T + 31T^{2} \)
37 \( 1 - 6.65T + 37T^{2} \)
41 \( 1 - 8.63T + 41T^{2} \)
43 \( 1 + 9.76T + 43T^{2} \)
47 \( 1 - 11.8T + 47T^{2} \)
53 \( 1 - 8.94T + 53T^{2} \)
59 \( 1 - 0.396T + 59T^{2} \)
61 \( 1 - 10.5T + 61T^{2} \)
67 \( 1 + 3.30T + 67T^{2} \)
71 \( 1 - 13.3T + 71T^{2} \)
73 \( 1 - 10.2T + 73T^{2} \)
79 \( 1 + 9.72T + 79T^{2} \)
83 \( 1 - 12.8T + 83T^{2} \)
89 \( 1 + 7.77T + 89T^{2} \)
97 \( 1 + 13.5T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.091236923985679933799512376719, −7.31325314353737224626557176154, −6.51119944268772193648052930640, −6.04113888873097358528754497791, −5.38685824639437914103315778439, −4.25804955851733386007930921873, −3.73220700853308205532487354201, −2.57161478417333546831835178102, −2.16622941904472062861526105042, −0.47332887970073024724639746571, 0.47332887970073024724639746571, 2.16622941904472062861526105042, 2.57161478417333546831835178102, 3.73220700853308205532487354201, 4.25804955851733386007930921873, 5.38685824639437914103315778439, 6.04113888873097358528754497791, 6.51119944268772193648052930640, 7.31325314353737224626557176154, 8.091236923985679933799512376719

Graph of the $Z$-function along the critical line