L(s) = 1 | + (1.5 + 2.59i)3-s + 7·5-s + (−5 + 8.66i)7-s + (−4.5 + 7.79i)9-s + (−11 − 19.0i)11-s + (−45.5 + 11.2i)13-s + (10.5 + 18.1i)15-s + (−18.5 + 32.0i)17-s + (15 − 25.9i)19-s − 30.0·21-s + (−81 − 140. i)23-s − 76·25-s − 27·27-s + (56.5 + 97.8i)29-s − 196·31-s + ⋯ |
L(s) = 1 | + (0.288 + 0.499i)3-s + 0.626·5-s + (−0.269 + 0.467i)7-s + (−0.166 + 0.288i)9-s + (−0.301 − 0.522i)11-s + (−0.970 + 0.240i)13-s + (0.180 + 0.313i)15-s + (−0.263 + 0.457i)17-s + (0.181 − 0.313i)19-s − 0.311·21-s + (−0.734 − 1.27i)23-s − 0.607·25-s − 0.192·27-s + (0.361 + 0.626i)29-s − 1.13·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 624 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.872 + 0.488i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 624 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.872 + 0.488i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.06927072486\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.06927072486\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-1.5 - 2.59i)T \) |
| 13 | \( 1 + (45.5 - 11.2i)T \) |
good | 5 | \( 1 - 7T + 125T^{2} \) |
| 7 | \( 1 + (5 - 8.66i)T + (-171.5 - 297. i)T^{2} \) |
| 11 | \( 1 + (11 + 19.0i)T + (-665.5 + 1.15e3i)T^{2} \) |
| 17 | \( 1 + (18.5 - 32.0i)T + (-2.45e3 - 4.25e3i)T^{2} \) |
| 19 | \( 1 + (-15 + 25.9i)T + (-3.42e3 - 5.94e3i)T^{2} \) |
| 23 | \( 1 + (81 + 140. i)T + (-6.08e3 + 1.05e4i)T^{2} \) |
| 29 | \( 1 + (-56.5 - 97.8i)T + (-1.21e4 + 2.11e4i)T^{2} \) |
| 31 | \( 1 + 196T + 2.97e4T^{2} \) |
| 37 | \( 1 + (6.5 + 11.2i)T + (-2.53e4 + 4.38e4i)T^{2} \) |
| 41 | \( 1 + (142.5 + 246. i)T + (-3.44e4 + 5.96e4i)T^{2} \) |
| 43 | \( 1 + (123 - 213. i)T + (-3.97e4 - 6.88e4i)T^{2} \) |
| 47 | \( 1 - 462T + 1.03e5T^{2} \) |
| 53 | \( 1 + 537T + 1.48e5T^{2} \) |
| 59 | \( 1 + (-288 + 498. i)T + (-1.02e5 - 1.77e5i)T^{2} \) |
| 61 | \( 1 + (-317.5 + 549. i)T + (-1.13e5 - 1.96e5i)T^{2} \) |
| 67 | \( 1 + (-101 - 174. i)T + (-1.50e5 + 2.60e5i)T^{2} \) |
| 71 | \( 1 + (543 - 940. i)T + (-1.78e5 - 3.09e5i)T^{2} \) |
| 73 | \( 1 + 805T + 3.89e5T^{2} \) |
| 79 | \( 1 + 884T + 4.93e5T^{2} \) |
| 83 | \( 1 + 518T + 5.71e5T^{2} \) |
| 89 | \( 1 + (97 + 168. i)T + (-3.52e5 + 6.10e5i)T^{2} \) |
| 97 | \( 1 + (-601 + 1.04e3i)T + (-4.56e5 - 7.90e5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.49950036716132014414515089839, −9.848957615391255238600726546009, −9.035840374928631461841546074396, −8.317434358778121964977440262825, −7.15296313469166780666282008677, −6.07482470278223436915330007533, −5.27690259441214228639905394875, −4.19665883146835978392188446249, −2.91606373878424086424647769692, −2.00143037833824063966941124340,
0.01716246547149166287698131723, 1.64007005488730284389196547953, 2.63800195760024291637682358411, 3.91586279084517783116866237641, 5.19920515309984855740661516888, 6.08469666697605443331302708344, 7.26722523541226245238527692501, 7.64130173056891933213640918852, 8.920145023610678355236830526787, 9.840497167331731853830892298358