Properties

Label 2-63-63.23-c2-0-13
Degree 22
Conductor 6363
Sign 0.8940.446i-0.894 - 0.446i
Analytic cond. 1.716621.71662
Root an. cond. 1.310201.31020
Motivic weight 22
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.87i·2-s + (−2.93 − 0.599i)3-s − 4.24·4-s + (−6.53 + 3.77i)5-s + (−1.72 + 8.44i)6-s + (2.05 − 6.69i)7-s + 0.709i·8-s + (8.28 + 3.52i)9-s + (10.8 + 18.7i)10-s + (−13.1 − 7.59i)11-s + (12.4 + 2.54i)12-s + (4.30 − 7.45i)13-s + (−19.2 − 5.90i)14-s + (21.4 − 7.17i)15-s − 14.9·16-s + (−4.60 + 2.66i)17-s + ⋯
L(s)  = 1  − 1.43i·2-s + (−0.979 − 0.199i)3-s − 1.06·4-s + (−1.30 + 0.754i)5-s + (−0.286 + 1.40i)6-s + (0.293 − 0.955i)7-s + 0.0886i·8-s + (0.920 + 0.391i)9-s + (1.08 + 1.87i)10-s + (−1.19 − 0.690i)11-s + (1.04 + 0.212i)12-s + (0.331 − 0.573i)13-s + (−1.37 − 0.421i)14-s + (1.43 − 0.478i)15-s − 0.934·16-s + (−0.271 + 0.156i)17-s + ⋯

Functional equation

Λ(s)=(63s/2ΓC(s)L(s)=((0.8940.446i)Λ(3s)\begin{aligned}\Lambda(s)=\mathstrut & 63 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.894 - 0.446i)\, \overline{\Lambda}(3-s) \end{aligned}
Λ(s)=(63s/2ΓC(s+1)L(s)=((0.8940.446i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 63 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.894 - 0.446i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 6363    =    3273^{2} \cdot 7
Sign: 0.8940.446i-0.894 - 0.446i
Analytic conductor: 1.716621.71662
Root analytic conductor: 1.310201.31020
Motivic weight: 22
Rational: no
Arithmetic: yes
Character: χ63(23,)\chi_{63} (23, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 63, ( :1), 0.8940.446i)(2,\ 63,\ (\ :1),\ -0.894 - 0.446i)

Particular Values

L(32)L(\frac{3}{2}) \approx 0.114141+0.484698i0.114141 + 0.484698i
L(12)L(\frac12) \approx 0.114141+0.484698i0.114141 + 0.484698i
L(2)L(2) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad3 1+(2.93+0.599i)T 1 + (2.93 + 0.599i)T
7 1+(2.05+6.69i)T 1 + (-2.05 + 6.69i)T
good2 1+2.87iT4T2 1 + 2.87iT - 4T^{2}
5 1+(6.533.77i)T+(12.521.6i)T2 1 + (6.53 - 3.77i)T + (12.5 - 21.6i)T^{2}
11 1+(13.1+7.59i)T+(60.5+104.i)T2 1 + (13.1 + 7.59i)T + (60.5 + 104. i)T^{2}
13 1+(4.30+7.45i)T+(84.5146.i)T2 1 + (-4.30 + 7.45i)T + (-84.5 - 146. i)T^{2}
17 1+(4.602.66i)T+(144.5250.i)T2 1 + (4.60 - 2.66i)T + (144.5 - 250. i)T^{2}
19 1+(0.4170.722i)T+(180.5312.i)T2 1 + (0.417 - 0.722i)T + (-180.5 - 312. i)T^{2}
23 1+(33.8+19.5i)T+(264.5458.i)T2 1 + (-33.8 + 19.5i)T + (264.5 - 458. i)T^{2}
29 1+(12.5+7.25i)T+(420.5728.i)T2 1 + (-12.5 + 7.25i)T + (420.5 - 728. i)T^{2}
31 112.7T+961T2 1 - 12.7T + 961T^{2}
37 1+(11.720.3i)T+(684.51.18e3i)T2 1 + (11.7 - 20.3i)T + (-684.5 - 1.18e3i)T^{2}
41 1+(13.4+7.75i)T+(840.5+1.45e3i)T2 1 + (13.4 + 7.75i)T + (840.5 + 1.45e3i)T^{2}
43 1+(0.4480.776i)T+(924.5+1.60e3i)T2 1 + (-0.448 - 0.776i)T + (-924.5 + 1.60e3i)T^{2}
47 1+2.35iT2.20e3T2 1 + 2.35iT - 2.20e3T^{2}
53 1+(31.418.1i)T+(1.40e32.43e3i)T2 1 + (31.4 - 18.1i)T + (1.40e3 - 2.43e3i)T^{2}
59 1+48.6iT3.48e3T2 1 + 48.6iT - 3.48e3T^{2}
61 1+29.6T+3.72e3T2 1 + 29.6T + 3.72e3T^{2}
67 192.5T+4.48e3T2 1 - 92.5T + 4.48e3T^{2}
71 115.1iT5.04e3T2 1 - 15.1iT - 5.04e3T^{2}
73 1+(46.8+81.0i)T+(2.66e3+4.61e3i)T2 1 + (46.8 + 81.0i)T + (-2.66e3 + 4.61e3i)T^{2}
79 1+82.1T+6.24e3T2 1 + 82.1T + 6.24e3T^{2}
83 1+(127.+73.3i)T+(3.44e35.96e3i)T2 1 + (-127. + 73.3i)T + (3.44e3 - 5.96e3i)T^{2}
89 1+(92.353.2i)T+(3.96e3+6.85e3i)T2 1 + (-92.3 - 53.2i)T + (3.96e3 + 6.85e3i)T^{2}
97 1+(26.0+45.0i)T+(4.70e3+8.14e3i)T2 1 + (26.0 + 45.0i)T + (-4.70e3 + 8.14e3i)T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−13.54404591655057303220448707059, −12.64775426213615962049255522311, −11.48973538947100087706282722076, −10.81727664390609053434988370964, −10.41371990197610202879685720993, −8.049431440468640334504178840223, −6.83515382450712050301286010330, −4.63549392031665671306821864464, −3.22424197911385682344932574576, −0.52148987682429679346737572832, 4.64817414435236099893798663826, 5.37419393783963400787342576645, 6.94971681062098608054258948714, 8.010580484355659562348967519937, 9.129382956516028007732193436454, 11.10915189497396338730719081552, 12.01594526519611641049095567181, 13.08049999204700168644113594754, 14.96606081085873893862400389288, 15.69542239603633568335693625305

Graph of the ZZ-function along the critical line