Properties

Label 2-6300-1.1-c1-0-20
Degree $2$
Conductor $6300$
Sign $1$
Analytic cond. $50.3057$
Root an. cond. $7.09265$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 7-s + 4·11-s + 6·13-s + 2·17-s + 6·19-s + 2·23-s − 6·29-s − 2·31-s + 4·37-s − 8·41-s + 4·43-s + 4·47-s + 49-s + 6·53-s − 4·59-s + 14·61-s − 4·67-s + 10·73-s − 4·77-s − 16·83-s − 8·89-s − 6·91-s − 10·97-s − 16·101-s − 16·103-s − 6·107-s − 14·109-s + ⋯
L(s)  = 1  − 0.377·7-s + 1.20·11-s + 1.66·13-s + 0.485·17-s + 1.37·19-s + 0.417·23-s − 1.11·29-s − 0.359·31-s + 0.657·37-s − 1.24·41-s + 0.609·43-s + 0.583·47-s + 1/7·49-s + 0.824·53-s − 0.520·59-s + 1.79·61-s − 0.488·67-s + 1.17·73-s − 0.455·77-s − 1.75·83-s − 0.847·89-s − 0.628·91-s − 1.01·97-s − 1.59·101-s − 1.57·103-s − 0.580·107-s − 1.34·109-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6300 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6300 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6300\)    =    \(2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 7\)
Sign: $1$
Analytic conductor: \(50.3057\)
Root analytic conductor: \(7.09265\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 6300,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.507190893\)
\(L(\frac12)\) \(\approx\) \(2.507190893\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
7 \( 1 + T \)
good11 \( 1 - 4 T + p T^{2} \)
13 \( 1 - 6 T + p T^{2} \)
17 \( 1 - 2 T + p T^{2} \)
19 \( 1 - 6 T + p T^{2} \)
23 \( 1 - 2 T + p T^{2} \)
29 \( 1 + 6 T + p T^{2} \)
31 \( 1 + 2 T + p T^{2} \)
37 \( 1 - 4 T + p T^{2} \)
41 \( 1 + 8 T + p T^{2} \)
43 \( 1 - 4 T + p T^{2} \)
47 \( 1 - 4 T + p T^{2} \)
53 \( 1 - 6 T + p T^{2} \)
59 \( 1 + 4 T + p T^{2} \)
61 \( 1 - 14 T + p T^{2} \)
67 \( 1 + 4 T + p T^{2} \)
71 \( 1 + p T^{2} \)
73 \( 1 - 10 T + p T^{2} \)
79 \( 1 + p T^{2} \)
83 \( 1 + 16 T + p T^{2} \)
89 \( 1 + 8 T + p T^{2} \)
97 \( 1 + 10 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.131890706453948184570671350528, −7.16210467109688053377700596946, −6.73729654778588428291582758126, −5.78786571439662084834813964485, −5.46505875227051947526810291933, −4.14934242766918376469827701972, −3.68069679041887771932599163856, −2.96269561686820682512049306286, −1.60945577397969897700417016725, −0.909971821433674117280248571734, 0.909971821433674117280248571734, 1.60945577397969897700417016725, 2.96269561686820682512049306286, 3.68069679041887771932599163856, 4.14934242766918376469827701972, 5.46505875227051947526810291933, 5.78786571439662084834813964485, 6.73729654778588428291582758126, 7.16210467109688053377700596946, 8.131890706453948184570671350528

Graph of the $Z$-function along the critical line