L(s) = 1 | + (0.952 − 1.65i)2-s + (0.214 − 0.371i)3-s + (−0.815 − 1.41i)4-s + 1.47·5-s + (−0.408 − 0.707i)6-s + 0.702·8-s + (1.40 + 2.43i)9-s + (1.40 − 2.43i)10-s + (2.19 − 3.80i)11-s − 0.698·12-s + (−2.69 + 2.39i)13-s + (0.315 − 0.546i)15-s + (2.30 − 3.98i)16-s + (−0.601 − 1.04i)17-s + 5.36·18-s + (1.62 + 2.80i)19-s + ⋯ |
L(s) = 1 | + (0.673 − 1.16i)2-s + (0.123 − 0.214i)3-s + (−0.407 − 0.706i)4-s + 0.658·5-s + (−0.166 − 0.288i)6-s + 0.248·8-s + (0.469 + 0.813i)9-s + (0.443 − 0.768i)10-s + (0.662 − 1.14i)11-s − 0.201·12-s + (−0.748 + 0.663i)13-s + (0.0814 − 0.141i)15-s + (0.575 − 0.996i)16-s + (−0.145 − 0.252i)17-s + 1.26·18-s + (0.371 + 0.644i)19-s + ⋯ |
Λ(s)=(=(637s/2ΓC(s)L(s)(−0.0662+0.997i)Λ(2−s)
Λ(s)=(=(637s/2ΓC(s+1/2)L(s)(−0.0662+0.997i)Λ(1−s)
Degree: |
2 |
Conductor: |
637
= 72⋅13
|
Sign: |
−0.0662+0.997i
|
Analytic conductor: |
5.08647 |
Root analytic conductor: |
2.25532 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ637(295,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 637, ( :1/2), −0.0662+0.997i)
|
Particular Values
L(1) |
≈ |
1.79863−1.92200i |
L(21) |
≈ |
1.79863−1.92200i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1 |
| 13 | 1+(2.69−2.39i)T |
good | 2 | 1+(−0.952+1.65i)T+(−1−1.73i)T2 |
| 3 | 1+(−0.214+0.371i)T+(−1.5−2.59i)T2 |
| 5 | 1−1.47T+5T2 |
| 11 | 1+(−2.19+3.80i)T+(−5.5−9.52i)T2 |
| 17 | 1+(0.601+1.04i)T+(−8.5+14.7i)T2 |
| 19 | 1+(−1.62−2.80i)T+(−9.5+16.4i)T2 |
| 23 | 1+(−2.21+3.84i)T+(−11.5−19.9i)T2 |
| 29 | 1+(0.0837−0.145i)T+(−14.5−25.1i)T2 |
| 31 | 1+5.24T+31T2 |
| 37 | 1+(3.52−6.10i)T+(−18.5−32.0i)T2 |
| 41 | 1+(−2.58+4.47i)T+(−20.5−35.5i)T2 |
| 43 | 1+(0.0113+0.0197i)T+(−21.5+37.2i)T2 |
| 47 | 1+11.6T+47T2 |
| 53 | 1+0.141T+53T2 |
| 59 | 1+(2.67+4.62i)T+(−29.5+51.0i)T2 |
| 61 | 1+(−5.77−9.99i)T+(−30.5+52.8i)T2 |
| 67 | 1+(2.06−3.58i)T+(−33.5−58.0i)T2 |
| 71 | 1+(−4.98−8.63i)T+(−35.5+61.4i)T2 |
| 73 | 1+15.2T+73T2 |
| 79 | 1−0.774T+79T2 |
| 83 | 1−16.0T+83T2 |
| 89 | 1+(−3.27+5.67i)T+(−44.5−77.0i)T2 |
| 97 | 1+(−1.74−3.02i)T+(−48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.47243284934373811217494805799, −9.822541607415890265045814125430, −8.831231251741952447931153830158, −7.70008068916775842636549925169, −6.70284285982844094072486676390, −5.50348382428050391925076611332, −4.60471264221294279352924935556, −3.52613901911939569504501647789, −2.39125458713730210177750496910, −1.46713675594188325938413675365,
1.76103362439323387243986848632, 3.52435549322508809895105736344, 4.59413447888692580824827373955, 5.36913233024785055545320841917, 6.36669834854645623675837926193, 7.08187092447380363169152024318, 7.77785038667649480175568226558, 9.233306508850426564696787788351, 9.668520040290791458923444913427, 10.62497398648654110588637193324