L(s) = 1 | + (0.952 − 1.65i)2-s + (0.214 − 0.371i)3-s + (−0.815 − 1.41i)4-s + 1.47·5-s + (−0.408 − 0.707i)6-s + 0.702·8-s + (1.40 + 2.43i)9-s + (1.40 − 2.43i)10-s + (2.19 − 3.80i)11-s − 0.698·12-s + (−2.69 + 2.39i)13-s + (0.315 − 0.546i)15-s + (2.30 − 3.98i)16-s + (−0.601 − 1.04i)17-s + 5.36·18-s + (1.62 + 2.80i)19-s + ⋯ |
L(s) = 1 | + (0.673 − 1.16i)2-s + (0.123 − 0.214i)3-s + (−0.407 − 0.706i)4-s + 0.658·5-s + (−0.166 − 0.288i)6-s + 0.248·8-s + (0.469 + 0.813i)9-s + (0.443 − 0.768i)10-s + (0.662 − 1.14i)11-s − 0.201·12-s + (−0.748 + 0.663i)13-s + (0.0814 − 0.141i)15-s + (0.575 − 0.996i)16-s + (−0.145 − 0.252i)17-s + 1.26·18-s + (0.371 + 0.644i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0662 + 0.997i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.0662 + 0.997i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.79863 - 1.92200i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.79863 - 1.92200i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 \) |
| 13 | \( 1 + (2.69 - 2.39i)T \) |
good | 2 | \( 1 + (-0.952 + 1.65i)T + (-1 - 1.73i)T^{2} \) |
| 3 | \( 1 + (-0.214 + 0.371i)T + (-1.5 - 2.59i)T^{2} \) |
| 5 | \( 1 - 1.47T + 5T^{2} \) |
| 11 | \( 1 + (-2.19 + 3.80i)T + (-5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + (0.601 + 1.04i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-1.62 - 2.80i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-2.21 + 3.84i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (0.0837 - 0.145i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + 5.24T + 31T^{2} \) |
| 37 | \( 1 + (3.52 - 6.10i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (-2.58 + 4.47i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (0.0113 + 0.0197i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + 11.6T + 47T^{2} \) |
| 53 | \( 1 + 0.141T + 53T^{2} \) |
| 59 | \( 1 + (2.67 + 4.62i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-5.77 - 9.99i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (2.06 - 3.58i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (-4.98 - 8.63i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + 15.2T + 73T^{2} \) |
| 79 | \( 1 - 0.774T + 79T^{2} \) |
| 83 | \( 1 - 16.0T + 83T^{2} \) |
| 89 | \( 1 + (-3.27 + 5.67i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-1.74 - 3.02i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.47243284934373811217494805799, −9.822541607415890265045814125430, −8.831231251741952447931153830158, −7.70008068916775842636549925169, −6.70284285982844094072486676390, −5.50348382428050391925076611332, −4.60471264221294279352924935556, −3.52613901911939569504501647789, −2.39125458713730210177750496910, −1.46713675594188325938413675365,
1.76103362439323387243986848632, 3.52435549322508809895105736344, 4.59413447888692580824827373955, 5.36913233024785055545320841917, 6.36669834854645623675837926193, 7.08187092447380363169152024318, 7.77785038667649480175568226558, 9.233306508850426564696787788351, 9.668520040290791458923444913427, 10.62497398648654110588637193324