L(s) = 1 | − 5-s + 7-s − 4·13-s + 6·17-s − 2·19-s − 3·23-s + 25-s − 3·29-s + 10·31-s − 35-s − 10·37-s − 9·41-s + 4·43-s + 9·47-s − 6·49-s + 6·53-s − 6·59-s − 61-s + 4·65-s − 11·67-s + 12·71-s − 4·73-s + 10·79-s − 9·83-s − 6·85-s − 9·89-s − 4·91-s + ⋯ |
L(s) = 1 | − 0.447·5-s + 0.377·7-s − 1.10·13-s + 1.45·17-s − 0.458·19-s − 0.625·23-s + 1/5·25-s − 0.557·29-s + 1.79·31-s − 0.169·35-s − 1.64·37-s − 1.40·41-s + 0.609·43-s + 1.31·47-s − 6/7·49-s + 0.824·53-s − 0.781·59-s − 0.128·61-s + 0.496·65-s − 1.34·67-s + 1.42·71-s − 0.468·73-s + 1.12·79-s − 0.987·83-s − 0.650·85-s − 0.953·89-s − 0.419·91-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 6480 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6480 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 + T \) |
good | 7 | \( 1 - T + p T^{2} \) |
| 11 | \( 1 + p T^{2} \) |
| 13 | \( 1 + 4 T + p T^{2} \) |
| 17 | \( 1 - 6 T + p T^{2} \) |
| 19 | \( 1 + 2 T + p T^{2} \) |
| 23 | \( 1 + 3 T + p T^{2} \) |
| 29 | \( 1 + 3 T + p T^{2} \) |
| 31 | \( 1 - 10 T + p T^{2} \) |
| 37 | \( 1 + 10 T + p T^{2} \) |
| 41 | \( 1 + 9 T + p T^{2} \) |
| 43 | \( 1 - 4 T + p T^{2} \) |
| 47 | \( 1 - 9 T + p T^{2} \) |
| 53 | \( 1 - 6 T + p T^{2} \) |
| 59 | \( 1 + 6 T + p T^{2} \) |
| 61 | \( 1 + T + p T^{2} \) |
| 67 | \( 1 + 11 T + p T^{2} \) |
| 71 | \( 1 - 12 T + p T^{2} \) |
| 73 | \( 1 + 4 T + p T^{2} \) |
| 79 | \( 1 - 10 T + p T^{2} \) |
| 83 | \( 1 + 9 T + p T^{2} \) |
| 89 | \( 1 + 9 T + p T^{2} \) |
| 97 | \( 1 + 10 T + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.67252102220871873654798706834, −7.11940944406184087615315155008, −6.27143814897454695539992376547, −5.41022613855701299790356949391, −4.83473355489696479578744856453, −4.02282497998374753778687713943, −3.21358016736820918032737686953, −2.33193074993550367101986670871, −1.28941564782313038107017061315, 0,
1.28941564782313038107017061315, 2.33193074993550367101986670871, 3.21358016736820918032737686953, 4.02282497998374753778687713943, 4.83473355489696479578744856453, 5.41022613855701299790356949391, 6.27143814897454695539992376547, 7.11940944406184087615315155008, 7.67252102220871873654798706834