Properties

Label 2-6480-1.1-c1-0-89
Degree $2$
Conductor $6480$
Sign $-1$
Analytic cond. $51.7430$
Root an. cond. $7.19326$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s + 7-s + 5·13-s − 6·17-s − 5·19-s − 3·23-s + 25-s − 8·31-s + 35-s + 2·37-s + 3·41-s + 4·43-s − 9·47-s − 6·49-s − 9·53-s − 15·59-s − 4·61-s + 5·65-s + 4·67-s − 6·71-s + 14·73-s − 14·79-s + 6·83-s − 6·85-s + 18·89-s + 5·91-s − 5·95-s + ⋯
L(s)  = 1  + 0.447·5-s + 0.377·7-s + 1.38·13-s − 1.45·17-s − 1.14·19-s − 0.625·23-s + 1/5·25-s − 1.43·31-s + 0.169·35-s + 0.328·37-s + 0.468·41-s + 0.609·43-s − 1.31·47-s − 6/7·49-s − 1.23·53-s − 1.95·59-s − 0.512·61-s + 0.620·65-s + 0.488·67-s − 0.712·71-s + 1.63·73-s − 1.57·79-s + 0.658·83-s − 0.650·85-s + 1.90·89-s + 0.524·91-s − 0.512·95-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6480 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6480 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6480\)    =    \(2^{4} \cdot 3^{4} \cdot 5\)
Sign: $-1$
Analytic conductor: \(51.7430\)
Root analytic conductor: \(7.19326\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 6480,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 - T \)
good7 \( 1 - T + p T^{2} \)
11 \( 1 + p T^{2} \)
13 \( 1 - 5 T + p T^{2} \)
17 \( 1 + 6 T + p T^{2} \)
19 \( 1 + 5 T + p T^{2} \)
23 \( 1 + 3 T + p T^{2} \)
29 \( 1 + p T^{2} \)
31 \( 1 + 8 T + p T^{2} \)
37 \( 1 - 2 T + p T^{2} \)
41 \( 1 - 3 T + p T^{2} \)
43 \( 1 - 4 T + p T^{2} \)
47 \( 1 + 9 T + p T^{2} \)
53 \( 1 + 9 T + p T^{2} \)
59 \( 1 + 15 T + p T^{2} \)
61 \( 1 + 4 T + p T^{2} \)
67 \( 1 - 4 T + p T^{2} \)
71 \( 1 + 6 T + p T^{2} \)
73 \( 1 - 14 T + p T^{2} \)
79 \( 1 + 14 T + p T^{2} \)
83 \( 1 - 6 T + p T^{2} \)
89 \( 1 - 18 T + p T^{2} \)
97 \( 1 + 16 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.84432176027030287302822162519, −6.72456519138276851336985368325, −6.31835275151028214959559083929, −5.66412956945919221887372184141, −4.67013580671224960260521590408, −4.12204527981708329211245796634, −3.20778625721106587787302194788, −2.10732993423136178554780902677, −1.52187493625375425037079741577, 0, 1.52187493625375425037079741577, 2.10732993423136178554780902677, 3.20778625721106587787302194788, 4.12204527981708329211245796634, 4.67013580671224960260521590408, 5.66412956945919221887372184141, 6.31835275151028214959559083929, 6.72456519138276851336985368325, 7.84432176027030287302822162519

Graph of the $Z$-function along the critical line