L(s) = 1 | + 2·5-s − 16-s + 2·17-s − 2·19-s − 2·23-s + 3·25-s + 2·43-s − 2·47-s − 49-s − 2·73-s − 2·80-s − 81-s − 2·83-s + 4·85-s − 4·95-s − 4·115-s − 2·121-s + 4·125-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + ⋯ |
L(s) = 1 | + 2·5-s − 16-s + 2·17-s − 2·19-s − 2·23-s + 3·25-s + 2·43-s − 2·47-s − 49-s − 2·73-s − 2·80-s − 81-s − 2·83-s + 4·85-s − 4·95-s − 4·115-s − 2·121-s + 4·125-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + ⋯ |
Λ(s)=(=(442225s/2ΓC(s)2L(s)Λ(1−s)
Λ(s)=(=(442225s/2ΓC(s)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
442225
= 52⋅72⋅192
|
Sign: |
1
|
Analytic conductor: |
0.110143 |
Root analytic conductor: |
0.576088 |
Motivic weight: |
0 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 442225, ( :0,0), 1)
|
Particular Values
L(21) |
≈ |
1.147099242 |
L(21) |
≈ |
1.147099242 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.72615927969041585731995588934, −10.32918905788299336334882037230, −9.988376377710077954788629609076, −9.924446417475096846171340070518, −9.138144032372668070630783235816, −9.030199195551708318378212193397, −8.378705614004823319141208676483, −7.975188589667517137895589762436, −7.48599048248338289994439141166, −6.68978854237765795045860714910, −6.47165642711306764012317447542, −6.03041039182173119252884507528, −5.57683985062434647262916555687, −5.28188730254292165510384571542, −4.30696940431278640308083674493, −4.26811540361817901088843956979, −3.12721838566535812553793476446, −2.65469169745686763492984916862, −1.91808551249598145800203958344, −1.54435994057161357153769802834,
1.54435994057161357153769802834, 1.91808551249598145800203958344, 2.65469169745686763492984916862, 3.12721838566535812553793476446, 4.26811540361817901088843956979, 4.30696940431278640308083674493, 5.28188730254292165510384571542, 5.57683985062434647262916555687, 6.03041039182173119252884507528, 6.47165642711306764012317447542, 6.68978854237765795045860714910, 7.48599048248338289994439141166, 7.975188589667517137895589762436, 8.378705614004823319141208676483, 9.030199195551708318378212193397, 9.138144032372668070630783235816, 9.924446417475096846171340070518, 9.988376377710077954788629609076, 10.32918905788299336334882037230, 10.72615927969041585731995588934